CALIFORNIA STATE UNIVERSITY SACRAMENTO

CHILD SAFETY: PROJECT DOCUMENTATION

PROJECT GUARDIAN

Authors: Zohaib ARSHAD Jashanjit BADWAL Leonardo JACOBO Didier MPONTE Harpreet SIDHU

Instructor: Dr. BELKHOUCHE

November 30, 2015

CONTENTS

Abstı	ract	1
Index	x Terms	1
I	Introduction	1
II	Societal Problem	1
ш	Design IdeaFeature: Voice CommunicationIII-AFeature: Voice CommunicationIII-BFeature: Mobile GSM Network ConnectionIII-CFeature: Global Position System TrackingIII-DFeature: Parental Control ApplicationIII-EFeature: ElectrocardiogramIII-FFeature: Panic ButtonIII-GFeature: CompassIII-HFeature: PedometerIII-1Feature: Wireless Network Usage	1 2 2 2 3 3 3 4 4 4
IV	Funding: "The Pitch"	5
V	Planning for the Spring 2016 Semester	5
VI	Work Breakdown Structure	6
VII	Project Time Line	8
VIII	Risk Assessment and Mitigation's	8
IX	Task's Assigned	8
X	User Manual X-A Android Application	11 11 11
XI	Design Documentation XI-A Hardware XI-B Software	11 11 11
XII	Integration Plans	12
XIII	Photographic Documentation	12
XIV	Conclusion	13
Appe	ndix	14
Refer	rences	14
Gloss	sary	15
Datas	sheet and Schematics	16
Resu	mes	109

i

LIST OF FIGURES

1	Work Breakdown Structure Diagram	7
2	Application Overview	11
3	Application Communication	11
4	Application Miscellaneous	11
5	GŚM/GPRS/GPS	12
6	Intel Edison Chip	12
7	Intel Edison Board	12
8	GSM/GPRS/GPS Working Prototype	13

LIST OF TABLES

Ι	Work Breakdown Structure	6
II	Project Time Line	8
III	Zohaib's Assignments	9
IV	Jashanjit's Assignments	9
V	Leonardo's Assignments	9
VI	Didier's Assignments	9
VII	Harpreet's Assignments	10
VIII	Hours Per Assignment	10

CHILD SAFETY: Project Documentation

Zohaib Arshad*, Jashanjit Badwal[†], Leonardo Jacobo[‡] and Didier Mponte[§], and Harpreet Sidhu[¶]

Department of Computer and Electrical Engineering, California State University Sacramento

Sacramento, CA USA

Email: *zaa25@csus.edu, [†]jashanjitbadwal@csus.edu, [‡]lj477@csus.edu, [§]dtm76@csus.edu, [¶]hs994@csus.edu

Abstract-One of the hardest, and sometimes scariest, things for a parent to do is let their child walk out that door alone to be gone for the next eight to sixteen hours. Sure theyre more than likely at school or out with close family friends but there are those times in between, en route, where anything can happen. A child can get lost, run away, or worse yet get kidnapped! These are some of things parents take into consideration when allowing or not allowing their child to go out on their own. Parents and guardians want assurance that their child is safe at their destination and will return home safe and sound. Team Child Safety wants to give these parents peace of mind while their children are not within their grasp. We are doing this by creating a mobile application for the parent to interface with their child who will wear our wearable device that will provide the childs location, capture heart rate data, and allow the child and parent/guardian to communicate via text messaging and voice communication. It will be as if the child is always within reach. This paper will go into more detail as to how our device will operate along with provide the reader with some statistics regarding child safety gathered through research.

Keywords—Wearable, child, safety, kidnapping, missing, apps, mobile, gps, iot.

I. INTRODUCTION

The Laboratory prototype documentation will cover the following portions: Problem statement, Design idea with punch list, work breakdown structure and time line (year-long portions), as well as photographic documentation from work completed. Along with an additional portion going over the teams participation in the competition, The Pitch, no other team in the senior design class was part of. The report contains executive summaries that contains a synopsis of all the sections, written specifically by the members that have completed work in that specific area. The document will also contain a user guide to help the user understand both the application and device. Along with the proper documentation, the report will also accommodate preliminary testing results.

II. SOCIETAL PROBLEM

Research conducted by Team Child Safety during the Fall semester of 2015 displayed that there is a societal need for a device to help reduce the amount of children that are reported missing each year and to help track children that become lost or kidnapped. From the research, the team conducted, it became evident, that this truly was a very serious problem in today's society. In the United States alone, there were at least 466,949 children reported missing by the National Crime Information Center (NCIC). In 2013, this number was at least 462,567. [1]

As the statics show, the number of children reported missing is steadily increasing.

Many predators use social media sites such as Facebook to contact underage children and trick them into meeting them. Youtuber, Coby Persin, set out to perform a social experiment which revealed how easy it can be for someone to kidnap a child using Facebook. [2] YouTuber Coby Persin carried out a child predator test with the agreement of the families of three children one who was 14, another who was 13 and a third who was just 12. Mikayla, 13, started chatting with Coby via a fake Facebook profile for a 15-year-old boy called Jason Biazzo. Just four days later she not only gave him her mobile phone number but she agreed to meet him in her local park.But after arriving she is shocked to find her father there waiting for her instead and he is not happy at all."You realise how scary this could have been?", he tells her. [2] Next up is a 12-yearold girl called Julianna, who agrees with "Jason" that he can come to her house after her father had fallen asleep. Julianna, who also offered up her telephone number without a second thought, texted him saying: "LOL. I would have to wait until my dad falls asleep if you want to chill cos I cant have boys over." Again, Julianna invited him inside and her father (who was not asleep) was not happy at all."Whats wrong with you?" he said. You could have been raped or murdered. I love you. Dont you ever do this again. The third youngster was called Jenna a 14-year-old who again handed over her phone number. This time the parents allowed Cory to pretend to kidnap her in a van to demonstrate the dangers of chatting to strangers online. [2]

All three of these innocent girls did not understand how dangerous the world can be and learned valuable lessons that day. The outcome may have been much worse. This is something that occurs every day. Predators finding new methods to contact underage children and tricking them into meeting them.

III. DESIGN IDEA

With the information Team Child Safety has gathered from researching, a consensus was reach on how the team should approach the societal issue. Team Child Safety wants to create a device which will provide location data to enhance the search efforts of missing minors. By allowing parents to track the position of their children through a app on a smart phone, the parents are given more comfort of where their children truly are. Team Child Safety will cover S.W.A.T (Smart Wearable Adolescence Tracker) in more detail throughout this report.

The design has three major focal points. The wearable device, a smart phone application and a central data processing

center. The goal is to keep this wearable as light, user friendly and comfortable as possible while sending vital information to the paired smart phone. The smart phone app will receive information from the wearable such as location. The central data processing center will be used to process the information from the watch to the app.

The design helps to solve the societal problem, by giving children who are in need, a device that can be used to contact for help. Children will be able contact for help, at will, when they are in a frightening situation. Parents will also be able to track their children through the mobile phone application. Giving the users a sense of security and comfort. With such a device implemented, Team Child Safety will give children that are in need of help, a way to inform their guardian. For example if a child is kidnapped, being followed or lost, the device will have GPS, voice communication and a panic button, all of which can be used to contact for help or be found.

A. Feature: Voice Communication

Voice communication is a key aspect for a parent or guardian to have with their child. This feature allows the user, namely the child. the parent or guardian, to communicate with one another verbally. The reasoning behind this, is to keep the child in a calm state of mind. Talking with ones parent or guardian, in a time where one is panicking, can tremendously help. A addition to this feature is to allow communication with more than one parental figure or guardian. Only a select number are allowed to communicate with the child.

For this feature to be enabled on the device, some hardware is required. Team Child Safety has chosen an add-on module for the Intel Edison Platform. This module is the same one that was chosen for Global Positioning System Tracking and GSM Mobile communication.

"The Diymall SIM808 GPS GSM GPRS Module for Arduino" was chosen as the add on module. [3]. In addition to this add on module, Team Child Safety will be required to integrate an antenna for the signal to transmit and receive data on.

The software behind this feature will include the use of some predefined libraries along with custom hand coded functions and classes. [4] The coding for this feature will be done in C/C++ programming language since Arduino supports only these two languages. The code will include a basic functionality for calling and texting such as make and receive phone calls, send and receive text messages, call disconnect, etc. To code for this platform. Team Child Safety have chosen to use a mixture of IDE's from Jet Brains, namely the IntelliJ IDEA. [5]

It is absolutely crucial for this feature to work 100% of the time. If this feature does not work properly many issues may arise, as this is a feature can be used in a very emotional period of time. One of the instances that this feature could not work properly or could eventually fail is when the wearable device is in the basement of the building or it is in the area where there is poor reception.

To validate voice communication, testing must be done on the data being sent in and out. All vocal transmissions must be tested manually by two parties to confirm, what is being said on the transmission is actually being received on the receiver.

The tests that will be conducted, include, but are not solely limited to the following.

Also, the constant communication of the wearable device with the android application which will show the location of the child through GPS.

To determine if Voice communication is complete, all tests listed above need to completed. Along with the tests, field testing needs to be done.

B. Feature: Mobile GSM Network Connection

The back end of communication with the mechanism and a data communicating server is all achieved with a Mobile GSM Network, GSM, or Global System for Mobile Communications. The Mobile GSM Network, is a definitive developed by the European Telecommunications Standards Institute (ETSI) to construe protocols for second-generation (2G) digital cellular networks used by mobile phones, first deployed in Finland in July 1991. [6] For Team Child safety, this results in being a key feature for the device to work properly. This feature allows the device to transmit data wireless to the central data processing center. Basically, this is the gateway between transmitting and receiving data between a parent/guardian and his or her child. This feature is crucial for the entire unit to work properly. If no data is being transmitted for received, then there is no tracking.

To validate Mobile GSM Network Connection, testing must be done on the data being sent in and out. All data that is sent in and out of the device must be validated. A CRC Check must be performed to determine the integrity of the data at hand.

C. Feature: Global Position System Tracking

Global Position System Tracking is another key feature for a parent to have with their child. This feature allows the user, namely the parent, to track their child. The reasoning behind this, is to allow the parent to know about his or her child's whereabouts. This can come in crucial if the child is lost or even, in a worst case scenario, the child is kidnapped. This can tremendously help the proper authorities locate and retrieve a child, or even the parent if the child is lost.

For this feature to be enabled on the device, some hardware is required. Team Child Safety has chosen an add on module for the Intel Edison Platform. This module is the same one that was chosen for Voice Communication and GSM Mobile communication. "The Diymall SIM808 GPS GSM GPRS Module for Arduino" was chosen as the add on module. [3]. In addition to this add on module, Team Child Safety will be required to integrate an antenna for the signal to transmit and receive data on.

The software behind this feature will include the use of some predefined libraries along with custom hand coded functions and classes. [4] To code for this platform. Team Child Safety have chosen to use a mixture of IDE's from Jet Brains, namely the IntelliJ IDEA. [5]

It is absolutely crucial for this feature to work 100% of the time. If this feature does not work properly many issues may arise, as this is a feature can be used in a very emotional period of time. The tests that will be conducted, include, but are not solely limited to the following.

To determine if Global Positioning System Tracking is complete, all tests listed above need to completed. Along with the tests, field testing needs to be done.

This feature in general may take a few weeks to complete. It is a key feature, that is required to allow the device to function correctly.

D. Feature: Parental Control Application

A Parental Control Application is required for this device. For a parent to be able to communicate and locate his or her child, some type of mechanism is required. This is were the Parental Control Application comes in. This is the central hub for a parent to use any functionality that the device the child wears will offer. This feature is crucial for the entire unit to work properly. If there is no way for the parent to communicate or locate his or her child then there is no clear purpose for the device, generally speaking. With out this application, major functionality is disabled.

For this feature to be enabled, the parent must have an Android smart phone. This hardware is not provided by Team Child Safety. Team Child safety will provide an application that is downloadable to the smart phone.

The software behind this feature will be hand coded in its entirety using Android Studio as the IDE. This IDE is based upon the IntelliJ platform that Jet Brains offers. [7]

It is absolutely crucial for this feature to work 100% of the time. If this feature does not work properly many issues may arise, as this is a feature can be used in a very emotional period of time. The tests that will be conducted, include, but are not solely limited to the following:

To determine if Parental Control Application is complete, all tests listed above need to completed. Along with the tests, field testing needs to be done.

This feature in general will be an on going process. Estimation for it's complete is not readily available. There are too many variables in determining the length of time that will be taken. It is a key feature that allows the parent to view viable and usable data.

E. Feature: Electrocardiogram

There are particular vitals that need to be watched on a child. One of the imperative vitals is the child's pulse which will result in the child's heart rate. Contemporary heart rate monitors usually comprise two elements: a transmitter and a receiver, though, later units have used conductive smart fabric

with built-in microprocessors that inspects the Electrocardiogram signal to determine heart rate. [8] This results in the Electrocardiogram, EKG becoming an essential feature for this device. With an EKG enabled on this device, a parent is able to view quite a few vitals on his or her child. Some vitals include the child's pulse and if the device is attached to the child. When this data is transmitted, it is first sent to the central processing center to be processed. The data is then refined and permeated on the central processing center and then the processed and filtered data is transmitted to the parental control application. The data given isn't just a number, but instead a level. The heart rate is then displayed in a friendly user interface, or UI. This UI will either display the heart rate in three forms. One, if the heart rate is within an acceptable range. Two, if it is starting to climb. Three, if the heart rate is in a dangerously high range. There is also an option available to display the data as a numerical amount instead. This level indicates if the child's pulse is within reasonable values. If it is not then the parental application alerts the parent of this change. If the device is found to not be connected on the child this is also a good indicator that the child's location may not be 100% valid. This feature is essential in providing useful feedback and metrics for the parent. Without this feature being implemented, the devices functionality can be limited.

For this feature to be enabled, device requires a series of components. A series Operational Amplifier, capacitors, resistors, along with some electrodes are required to complete this feature.

The software behind this feature will be entirely hand coded with a number of functions and classes. [4] To code for this platform. Team Child Safety have chosen to use a mixture of IDE's from Jet Brains, namely the IntelliJ IDEA. [5]

It is important for this feature to work. If this feature does not work properly, many of the metrics being sent to the parental application will not be enabled. The tests that will be conducted, include, but are not solely limited to the following.

To determine if Electrocardiogram is complete, all tests listed above need to completed. Along with the tests, field testing needs to be done.

This feature in general will take a few weeks to complete. It is a key feature that allows the parent to receive viable metrics data on his or her child's vitals.

F. Feature: Panic Button

If the situation ever occurs, where a child is being kidnapped or in danger for instance, the child is able to press the panic button on his or her watch. Briefly speaking, a panic button is an electronic component designed to assist in alerting an individual in emergency situations where a threat to persons or property exists. [9] Which is exactly what a child in a dire situation needs.

This feature is essential in providing useful feedback and metrics for the parent. Without this feature being implemented, the devices functionality can be limited.

For this feature to be incorporated on this device, there are a few components required. A button and resistors are required for this feature.

The software behind this feature will be entirely hand coded with a number of functions and classes. [4] To code for this platform. Team Child Safety has chosen to use a mixture of IDE's from Jet Brains, namely the IntelliJ IDEA. [5]

It is important for this feature to work. If this feature does not work properly, the child could press the panic button and the parent may never get a notification for this.

To determine if the Panic Button is complete, all tests listed above need to completed. Along with the tests, field testing needs to be done.

This feature in general will take a few weeks to complete. It is a key feature that allows the parent to receives critical information on his or her child.

G. Feature: Compass

When locating a child, GPS is not always readily available for use. Backup forms of locating are necessary to add as fail safes for the overall system.

This feature is useful in providing secondary localization data. Without this feature being implemented, the device will not have a fail safe back up when GPS does not function properly or is not readily available for use.

For this feature to be incorporated on this device, there are a few components required. A Triple-axis Accelerometer+Magnetometer (Compass) Board - LSM303 [10], is required to complete this feature.

The software behind this feature will be entirely hand coded with a number of functions and classes. [4] To code for this platform. Team Child Safety has chosen to use a mixture of IDE's from Jet Brains, namely the IntelliJ IDEA. [5]

It is important for this feature to work. If this feature does not work properly, then there is no fail safe system in place.

To determine if Compass is complete, all tests listed above need to completed. Along with the tests, field testing needs to be done.

This feature in general will take a few weeks to complete. It is a key feature that allows the parent to receives a secondary source of information on his or her child.

H. Feature: Pedometer

When locating a child, GPS is not always readily available for use. A portable electronic device, that counts each step a person takes by detecting the motion of the person's hips and hands can provide crucial pieces of information that can be used to determine the number of steps that the child in parallel with the direction they are moving with a compass. [11] Backup forms of locating are necessary to add as fail safes for the overall system.

This feature is useful in providing secondary localization data. Without this feature being implemented, the device will not have a fail safe back up when GPS does not function properly or is not readily available for use. For this feature to be incorporated on this device, there are a few components required. A Triple-axis Accelerometer+Magnetometer (Compass) Board - LSM303 [10], is required to complete this feature.

The software behind this feature will be entirely hand coded with a number of functions and classes. [4] To code for this platform. Team Child Safety has chosen to use a mixture of IDE's from Jet Brains, namely the IntelliJ IDEA. [5]

It is important for this feature to work. If this feature does not work properly, then there is no fail safe system in place.

To determine if Pedometer is complete, all tests listed above need to completed. Along with the tests, field testing needs to be done.

This feature in general will take a few weeks to complete. It is a key feature that allows the parent to receives a secondary source of information on his or her child.

I. Feature: Wireless Network Usage

Taking in consideration, the situation where a child may be lost or kidnapped, for instance, GPS and GSM are not always available in certain locations. There is the backup fail safe of a compass/pedometer feature, but this can only go so far. There needs to be another alternative, this is where wireless network usage comes into play. Everywhere around us, there are a growing number of wireless networks, such as Wifi. It would only make sense for this device to connect to them, as well, as another source of data connection. Along with being another source of data connection, wireless networks have identifiers, that identify which network they are. This piece of information can be used in locating a child. This information will be stored and then sent to the Central data processing center for further storage and usage.

This feature is useful in providing additional localization data and an alternative source of data connection.

Without this feature being implemented, the device will be more limited in certain scenarios.

For this feature to be incorporated on this device, there are a few components required. The Intel Edison Platform, will be used, as it has built in wifi and bluetooth radios. [12]

The software behind this feature will use a mixture of predefined libraries along many hand coded functions and classes. [4] To code for this platform. Team Child Safety have chosen to use a mixture of IDE's from Jet Brains, namely the IntelliJ IDEA. [5]

It is important for this feature to work. If this feature does not work properly, then there is no fail safe system in place.

- 1) Data Reliability
 - Verification of wireless networks being present.
 - Verification of wireless networks names being stored.

To determine if Wireless Network Usage is complete, all tests listed above need to completed. Along with the tests, field testing needs to be done.

This feature in general will take a few weeks to complete. It is a key feature that allows the parent to receives additional information on his or her child along with the device being able to connect to an alternative data connection.

Data Transmission

When transmitting data, Team Child Safety will begin with series of common steps for each feature which includes cyclic redundancy check, states are coded into the system. An error detection is done through this code. Also, the verification of bit rate for data transfer between CPU and add on module. Team Child Safety will also perform waveform test bench verification that all bits are being transferred correctly based on the clock cycle.

Testing

To determine if each feature set is complete, a series of test will be conducted. Along with the tests, field testing needs to be done.

IV. FUNDING: "THE PITCH"

The pitch is a competition hosted by the Center of Entrepreneurship at Sacramento State along with the Association of Collegiate Entrepreneurs. This competition is designed to help participants turn their solution to a problem in to a business. This event was closed to Sacramento State students, the winners from this even would be able to attend the Future Four competition. Team Child Safety decided that this competition would be a good way to get reimbursed and also provide funding for Project Guardian. The prizes for winning were the following: First Place \$700, Second Place \$500, and Third Place \$300. It was the first time presenting Project Guardian outside of the classroom, and to the team it seemed like a great success. Unfortunately, Team Child Safety was unable to place in the qualifying round, it did not discourage the team at all. The team considered this a valuable learning experience, and will continue to participate in any competitions, and strive for greatness.

V. PLANNING FOR THE SPRING 2016 SEMESTER

As the first half of our senior design winds down we are able to look back and take note of our successes while also looking into the future to the additional features to be added to make our system great. We have been able to get the following systems working: GSM communication, GPS localization, Heart rate sensor data, user verification, data streaming, and our mobile application along with our website. Taking a closer look into next semester, we plan to implement the following features: Panic Button, Battery and charging mechanism, design of band, clock, pedometer, improving our mobile application, and a feature which detects and stores other phones wireless ids. The previously stated additional features to be implemented during the spring semester are fairly selfexplanatory except for the last feature which I will explain in more detail. In the event that a child is kidnapped, although there will be our GPS module, law enforcement and especially

the parent/guardian would benefit from knowing who they are dealing with. To assist in this manner we plan to implement a feature that detects and stores surrounding phone wi-fi IDs as well as the time and length of time in which the phones were within range of the users wearable device. We believe this will potentially identify the kidnapper and make retrieving the child a success. Along with our new features, we still plan on continuously improving our current features and focusing on the actual build of the wearable. We are currently utilizing Arduinos but plan to implement all of our features on the Intel Edison to improve and enhance processing as well as decrease in the size of the band to make it more aesthetically pleasing to the user.

VI. WORK BREAKDOWN STRUCTURE

Feature	Subtask	Activity		
	Voice Communication	Interface GSM Radio with Intel Edison Kit/Arduino UNO		
	voice communication	Validation of feature with overall system		
	Mobile GSM Network Connection	Interface GSM Radio with Intel Edison Kit/Arduino UNO		
	Woone OSW Network Connection	Validation of feature with overall system		
	Global Positioning System Tracking Set	Interface GSM Radio with Intel Edison Kit/Arduino UNO		
	Stobul Fostioning System Hacking Set	Validation of feature with overall system		
	Compass	Interface Compass with Intel Edison Kit/Arduino UNO		
Localization		Validation of feature with overall system		
	Pedometer	Interface Pedometer with Intel Edison Kit/Arduino UNO		
		Validation of feature with overall system		
	Wireless Network Usage	Interface WiFi Radio with Intel Edison Kit/Arduino UNO		
	Whereas Herwork Chage	Validation of feature with overall system		
		Interface Central Processing Center with Intel Edison Kit/Arduino UNO		
	Central Data Processing Center	Interface Central Processing Center with the Intel Edison Kit/Arduino UNO		
		Validation of feature with overall system		
	Clock	Implement Clock Interface in the Application		
	CIOCK	User Verification with the Application		
	User Verification	User Verification with the Application		
Application	User vernication	Debug feature for any bugs encountered in Validation		
	Real Time Location	Implement Real Time Location in the Application		
	Locking Mechanism	Implement Locking Mechanism in the Application		
	Threat Level	Implement Threat Level in the Application		
		Implement Electrocardiogram in the Application		
Vitals	Electrocardiogram	Interface Electrocardiogram, with the Intel Edison Kit/Arduino UNO		
		Validation of feature with overall system		
Wearable Device	Panic Button	Interface the Panic Button with the Intel Edison Kit/Arduino UNO		

TABLE I: Work Breakdown Structure

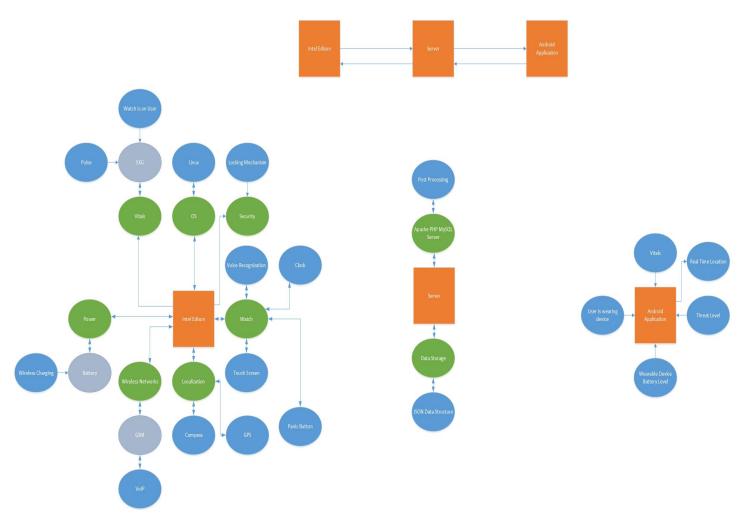


Fig. 1: Work Breakdown Structure Diagram

VII. PROJECT TIME LINE

TABLE II:	Project	Time	Line
-----------	---------	------	------

Tasks	Due Date
Develop Working Prototype	12/04/15
Continue improving Working Prototype	04/25/16
Problem Statement Report	09/14/15
Design Idea Contract	09/28/15
Work Breakdown Structure	09/28/15
Project Timeline	10/12/14
Risk Assessment Report	12/26/15
End of Term Documentation	12/11/15
Revised Problem Statement	01/22/16
Device Test Plan Report	02/01/16
Market Review	02/29/16
Mid Term Review	3/14/16
Deploy-able Prototype Presentation	4/18/16
End of Project Presentation	5/19/16
Android Application	4/1/16
Voice Communication	11/27/15
Global Positioning Date	11/27/15
Server	11/27/15
Vitals	11/27/15
User Verification	11/27/15
Panic Button	1/11/16
Wireless Network Monitoring	1/11/16
Touch Screen Display	11/27/15
Compass/Pedometer	1/11/16
Battery	2/12/16
Wireless Charging	4/1/16
Integrating all components together	4/1/16

VIII. RISK ASSESSMENT AND MITIGATION'S

As Team Child Safety is working to develop a wearable device for children that will be synced to a mobile app in which their parents will be able to view the status of their safety, health, and whereabouts, there are many risks to take in consideration. The four main features that pose as the four main risk, if execution fails, are localization, voice communication, the mobile application, and user verification.

Localization is critical in our design as it allows the parent/guardian the ability to view their child's location as the child wears the wearable which contains a GPRS and GSM module. The GPRS module is what enables the localization but cannot work properly unless paired with the GSM module which provides it the ability to send the location data to the mobile application for the parent/guardian to view. One of the goals of this product is to provide the parent/guardian with the ability to view their child's whereabouts and if our GPRS/GSM module fails then the entire product fails. We currently have this feature up and running and our goal for next semester is to incorporate a fail safe feature in case this fails which will incorporate an inertial measurement unit which will provide back up localization data. In conjunction with our localization feature, we are providing the ability for the child to communicate with the parent/guardian directly via voice communication and text messaging. We currently do not have any back up communication services if this feature were to completely fail but in the event that this feature were to fail, the parent/guardian will be notified via the mobile app and the wearable device.

The mobile application is one of the cornerstones of our wearable device as it provides the parent/guardian with the necessary data on their child. In the event that this feature fails to execute, our device will then begin to send the pertinent data via text messaging directly to the parents device. One of our biggest fears is our device ending up in the wrong hands and being manipulated by a thief, which could potentially alter and provide false data to the parent/guardian. To combat this we will be utilizing a user verification method which requires the user to input a password in order to register, utilize, and view data on the device. With our combined efforts we hope to provide the user and parent/guardian with an extra pair of eyes that is with their child even when their child is not within their sight.

IX. TASK'S ASSIGNED

Each member of the group was assigned certain features of this project depending on skill set, what they wanted to work on and the work load of each feature.

Below is a table with shows the tasks Zohaib Arshad worked on this semester.

Task	Hours
Problem Statement Report	20 Hours
Design Idea Report	25 Hours
Work Breakdown Report	32 Hours
Project Time line	10 Hours
Risk Assessment Report	3 Hours
Heart Rate Sensor	12 Hours
Android Application	2 Hours
Localization Feature	10 Hours
Voice Communication Feature	29 Hours
Shield Debugging	7 Hours
Global Positioning System Feature	10 Hours
Setting up Intel Edison	5 Hours
Implement GPS/GSM Shield with Intel Edison	10 Hours
The Pitch Competition	8 Hours
Laboratory Prototype Documentation	10 Hours
Total	193 Hours

TABLE III: Zohaib's Assignments

Below is a table with shows the tasks Jashanjit Badwal worked on this semester.

TABLE IV: Jashanjit's Assignments

Task	Hours
Problem Statement Report	20 Hours
Design Idea Report	25 Hours
Work Breakdown Report	32 Hours
Project Timeline	10 Hours
Risk Assessment Report	3 Hours
Heart Rate Sensor	4 Hours
Android Application	5 Hours
Localization Feature	8 Hours
Voice Communication	59 Hours
Laboratory Prototype Documentation	15 Hours
Total	181 Hours

Below is a table with shows the tasks Leonardo Jacobo worked on this semester.

TABLE	V: I	Leonardo's	Assignments
-------	------	------------	-------------

Task	Hours
Problem Statement Report	20 Hours
Design Idea Report	25 Hours
Work Breakdown Report	32 Hours
Project Time line	10 Hours
Risk Assessment Report	3 Hours
Android Application Development	73 Hours
Repository	2 Hours
The Pitch Competition	8 Hours
Python Refresher	4 Hours
Laboratory Prototype Documentation	12 Hours
Total	189 Hours

Below is a table with shows the tasks Didier Mponte worked on this semester.

TABLE	VI:	Didier's	Assignments

Task	Hours
Risk Assessment Report	10 Hours
Heart Rate Sensor	38 Hours
Risk Assessment Presentation	1 Hours
User Verification	10 Hours
Data Transfer to Server	20 Hours
Access Code and Security	10 Hours
Laboratory Prototype Documentation	3 Hours
Total	92 Hours

Below is a table with shows the tasks Harpreet Sidhu worked on this semester.

TABLE VII: Harpreet's Assignments

E.

Task	Hours
Problem Statement Report	20 Hours
Design Idea Report	25 Hours
Work Breakdown Report	32 Hours
Project Time Line	10 Hours
Risk Assessment Report	3 Hours
Heart Rate Sensor	2 Hours
Android Application Development	69 Hours
Repository	5 Hours
Touch screen	10 Hours
Server Development	20 Hours
Back end Code Development	36 Hours
Data Retrieval API Development	10 Hours
Authentication API Development	10 Hours
The Pitch Competition	8 Hours
Synchronization API	10 Hours
Data Management	4 Hours
User Authentication API	3 Hours
Laboratory Prototype Documentation	10 Hours
Total	287 Hours

TABLE VIII: Hours Per Assignment

Task	Zohaib	Jashanjit	Leonardo	Didier	Harpreet	Total
Problem Statement Report	20	20	20	0	20	80
Design Idea Report	25	25	25	0	25	100
Work Breakdown Report	32	32	32	0	32	128
Project Time Line	10	10	10	0	10	40
Risk Assessment Report	3	3	3	10	3	22
Voice Communication	29	59	0	0	0	88
Localization	10	8	0	0	0	18
Android Application	2	5	75	0	74	156
Touch Screen	0	0	0	0	10	10
Global Positioning System	10	0	0	0	0	10
User Verfication	0	0	0	10	0	10
Server	0	0	0	0	93	93
Heart Rate Sensor	12	0	0	38	2	52
Laboratory Prototype	10	15	12	3	10	50

X. USER MANUAL

The project has two essential features the user will need to understand how to use. The first is the wearable device which the parent of guardian will use to communicate with the wearable device. The second is the wearable device, the child will wear, which gives essential information to the parent or guardian.

A. Android Application

Team Child Safety has designed an application to work hand in hand with the device the user will be wearing. The purpose of the application is to prove the guardian of the user a feasible way to keep track of the whereabouts and important information regarding the user. The team decided that the best way to make an application was to keep it simple. The application highlights key features like Overview of the user, communication, and Miscellaneous. Within those features are subsections that will contain specific controls that will be available to the guardian.

As stated before the application is split into three portions. First is the overview, the overview will contain the basic information about the wearer. The two options currently available are vitals, and /GPS location. Communication is split into the

8 11

following portions, calling and texting. If you select the calling function, the application will automatically call the wearer, The Miscellaneous option will have any options the team feels

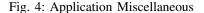


Fig. 3: Application Communication

will be necessary, for example, the contacts available on the device that the user can access. Most of these features are simple to use, basically you select the option you want and the application will do the rest. The way it's set up, makes it

Contacts

so that the user wont have to input anything. Team Child Safety figured that the best approach would be a fast and simple one, the application will recognize the device and display the information needed when selected.

B. Wearable Device

As of right now, all usage of the wearable device must be done through a serial monitor application. The recommended application is the Arduino software's serial monitor, which is available at http://www.arduino.cc/ A text based user interface is provided as of now. Through this interface a user is able to make calls, send and receive text messages, transmit and receive synchronous data from the central data storage center.

XI. DESIGN DOCUMENTATION

For our project to work as expected, a combination of both hardware and software is required. The details for the hardware equipment and software we used are given in detail below.

A. Hardware

For the hardware, the team relied primarily on the Arduino Uno as the main micro controller this semester. Eventually the team plans to transition to the Intel Edison, a microprocessor which is stronger, and much smaller then the Aduino Uno. For the GSM/GPRS/GPS shield, the team had to make various changes. The first shield we used, The Quadband GSM/GPRS/GPS shield stopped functioning, and after hours of debugging, the team decided to buy new component. The team needed to eventually replace this component as it was very big and would not suite a wearable device. To keep the project moving, the team purchased a GPRS shield for voice communication and texting. The team later bought a Lonet - GSM/GPRS/GPS Breakout, which included all of the essential features we needed. This component was very small and light, a excellent replacement for the Quadband GSM/GPRS/GPS. The team also bought spare components if any of the equipment stopped functioning.

B. Software

Software for this project has been coded from the ground up. Multiple integrated development environments, or IDE for short, are used in the development of the software. The Jetbrains software suite is widely used ranging from code that is done within Android XML, Android Java, C, C++, PHP, Python, and SQL. The different parts of this software suite There is a need to have a complier for the microcontrollers and microprocessors that are used. The software for these include Intel's XDK software, and Arduino's very own IDE. All data transactions are ran through the UART protocol. UART, universal asynchronous receiver/transmitter, is a protocol that allows data to transfer from one location to another over high speeds. Calling, texting and locating can be verified using the code provided.

XII. INTEGRATION PLANS

The team conducted many tests to check if the device is working correctly. This was done regularly to determine if each feature is working correctly. For example, to test out the Voice Communication Feature, the team would make calls from and to the GSM/GPRS shield. This was done for all features including the android application, global positioning system, and heart rate sensor. This also provided us feedback for which members needed help and which features required more assistance.

From this the team was able to determine how to integrate the features together. The team did encounter situations where some of the hardware was not compatible with other hardware or software. Only after confirming each part would work together, we would purchase the item. Only after each member had their feature working correctly with the hardware or software, the team would try to integrate the components together. So far, the team has run into minor errors but the major components still need to be integrated into the project. The team plans to dedicate this week to that.

XIII. PHOTOGRAPHIC DOCUMENTATION

Below is the GPRS/GSM/GPS module that team child safety will be using for voice communciation and GPS location.

Fig. 5: GSM/GPRS/GPS

Below is the Intel Edison microprocessor that team child safety will be using for integrating all the features together.

Fig. 6: Intel Edison Chip

Below is the Intel Edison Board that team child safety will be using for integrating all the features together.

Fig. 7: Intel Edison Board

Below is the working prototype of GPRS/GSM/GPS using Arduino UNO board.

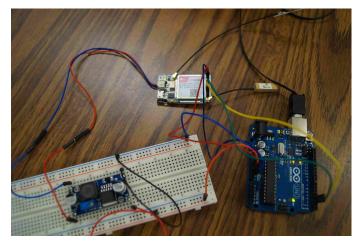


Fig. 8: GSM/GPRS/GPS Working Prototype

XIV. CONCLUSION

This document has described our development towards a wearable device that will provide parents and guardians peace of mind as their children are out and about throughout the day by providing their location, status of their health, and a medium to communicate (via voice and text messaging). We believe that users of our product will benefit from the wealth of data our device captures and stores. As members of the engineering community it is our responsibility to utilize our skillsets and knowledge obtained to better society. Children have and will always be the key to our future as bred amongst them will be our next great leaders and inventors and we believe it is our duty to protect them and ensure their safety. With our combined engineering skillsets we believe our system will accomplish this task while also providing parents and guardians with peace of mind.

APPENDIX

REFERENCES

- [1] N. C. for Missing and E. Children. (2015) Key facts. [Online]. Available: http://www.missingkids.com/KeyFacts
- [2] A. Willis. (2015) Youtuber coby persin societal experiment for children and parents. [Online]. Available: http://metro.co.uk/2015/08/11/ wheres-your-child-predator-test-shows-how-easy-it-is-to-kidnap-young-girls-5338083/
- [3] DIYmall. (2015) Diymall sim808 gps gsm gprs module for arduino. [Online]. Available: http://www.amazon.com/ Diymall-SIM808-GPRS-Module-Arduino/dp/B00Y20CRJG/ref=sr_1_1?ie=UTF8&qid=1448770608&sr=8-1&keywords=sim808
- [4] ----. (2015) Lonet gsm/gprs/gps breakout. [Online]. Available: http://www.seeedstudio.com/wiki/LoNet_-_GSM/GPRS/GPS_Breakout
- [5] J. Brains. (2015) Intellij idea. [Online]. Available: https://www.jetbrains.com/idea/
- [6] A. A. Huurdeman. (2003) The worldwide history of telecommunications. [Online]. Available: https://books.google.se/books?hl=sv&id=SnjGRDVIUL4C& dq=GSM+1992&q=GSM+first#v=snippet&q=GSM%201992%20finnish&f=false
- [7] Google. (2015) Android studio. [Online]. Available: http://developer.android.com/tools/studio/index.html
- [8] (2003) Heart rate monitor. [Online]. Available: https://en.wikipedia.org/wiki/Heart_rate_monitor
- [9] (2015) Clock. [Online]. Available: https://en.wikipedia.org/wiki/Panic_button
- [10] Adafruit. (2015) Triple-axis accelerometer+magnetometer (compass) board lsm303. [Online]. Available: http://www.adafruit.com/products/1120
- [11] (2015) Pedometer. [Online]. Available: https://en.wikipedia.org/wiki/Pedometer
- [12] Intel. (2015) Intel edison. [Online]. Available: http://www.intel.com/content/www/us/en/do-it-yourself/edison.html

GLOSSARY

CAD	
CPU	Computer-Aided Design.
CRC	Central Processing Unit.
	Cyclic Redundancy Check.
EKG	Electrocardiogram.
ETSI	-
	European Telecommunications Standards Institute.
GPRS	General Packet Radio Service.
GPS	Global Positioning System.
GSM	Global System for Mobile Communications.
IDE	
IMU	Integrated Development Environment.
ЮТ	Inertial Measurement Unit.
	Internet of Things.
MCSM	Mobile Children Security Monitoring.
NCIC	
NCMC	National Crime Information Center.

National Center for Missing Children.

NCMEC National Center for Missing and Exploited Children.

PCB

Printed Circuit Board.

UI

User Interface.

ACKNOWLEDGMENT

Team Child Safety would like to thank Dr. Dennis Dalhquist, Professor Russ Tatro, Dr. Fethi Belkhouche for all their help. Additionally, the authors would like to thank Dr. Fethi Belkhouche for his feedback and support regarding implementation and design.

Intel[®] Edison Development Platform

Introduction

The Intel® Edison development platform is designed to lower the barriers to entry for a range of inventors, entrepreneurs, and consumer product designers to rapidly prototype and produce "Internet of Things" (IoT) and wearable computing products.

Intel[®] Edison Board for Arduino*

Supports Arduino Sketch, Linux, Wi-Fi, and Bluetooth.

Board I/O: Compatible with Arduino Uno (except 4 PWM instead of 6 PWM):

- 20 digital input/output pins, including 4 pins as PWM outputs.
- 6 analog inputs.
- 1 UART (Rx/Tx).
- 1 l²C.
- 1 ICSP 6-pin header (SPI).
- Micro USB device connector OR (via mechanical switch) dedicated standard size USB host Type-A connector.
- Micro USB device (connected to UART).
- SD card connector.
- DC power jack (7 to15 VDC input).


Intel[®] Edison Breakout Board

Slightly larger than the Intel[®] Edison module, the Intel[®] Edison Breakout Board has a minimal set of features:

- Exposes native 1.8 V I/O of the Edison module.
- 0.1 inch grid I/O array of through-hole solder points.
- USB OTG with USB Micro Type-AB connector.
- USB OTG power switch.
- Battery charger.
- USB to device UART bridge with USB micro Type-B connector.
- DC power supply jack (7 to 15 VDC input).

Intel® IoT Analytics Platform

- Provides seamless Device-to-Device and Device-to-Cloud communication.
- Ability to run rules on your data stream that trigger alerts based on advanced analytics.
- Foundational tools for collecting, storing, and processing data in the cloud.
- Free for limited and noncommercial use.

PHYSICAL	
Form factor	Board with 70-pin connector
Dimensions	35.5 × 25.0 × 3.9 mm (1.4 × 1.0 × 0.15 inches) max
C/M/F	Blue PCB with shields / No enclosure
Connector	Hirose DF40 Series (1.5, 2.0, or 3.0 mm stack height)
Operating temperature	32 to 104°F (0 to 40°C)
EXTERNAL INTERFACES	
Total of 40 GPIOs, which can be	configured as:
SD card	1 interface
UART	2 controllers (1 full flow control, 1 Rx/Tx)
12C	2 controllers
SPI	1 controller with 2 chip selects
125	1 controller
GPIO	Additional 12 (with 4 capable of PWM)
USB 2.0	1 OTG controller
Clock output	32 kHz, 19.2 MHz
MAJOR EDISON COMPONENTS	;
SoC	22 nm Intel® SoC that includes a dual-core, dual-threaded Intel® Atom™ CPU at 500 MHz and a 32-bit Intel® Quark™ microcontroller at 100 MHz
RAM	1 GB LPDDR3 POP memory (2 channel 32bits @ 800MT/sec)
Flash storage	4 GB eMMC (v4.51 spec)
WiFi	Broadcom* 43340 802.11 a/b/g/n;
	Dual-band (2.4 and 5 GHz)
	Onboard antenna or external antenna (SKU configurations)
Bluetooth	Bluetooth 4.0
POWER	
Input	3.3 to 4.5 V
Output	100 ma @3.3 V and 100 ma @ 1.8 V
Power	Standby (No radios): 13 mW Standby (Bluetooth 4.0): 21.5 mW (BTLE in Q4-14) Standby (Wi-Fi): 35 mW
FIRMWARE + SOFTWARE	
CPU OS	Yocto Linux* v1.6
Development environments	Arduino* IDE Eclipse supporting: C, C++, and Python
	Intel XDK supporting: Node.JS and HTML5
MCU OS	RTOS
Development environments	MCU SDK and IDE

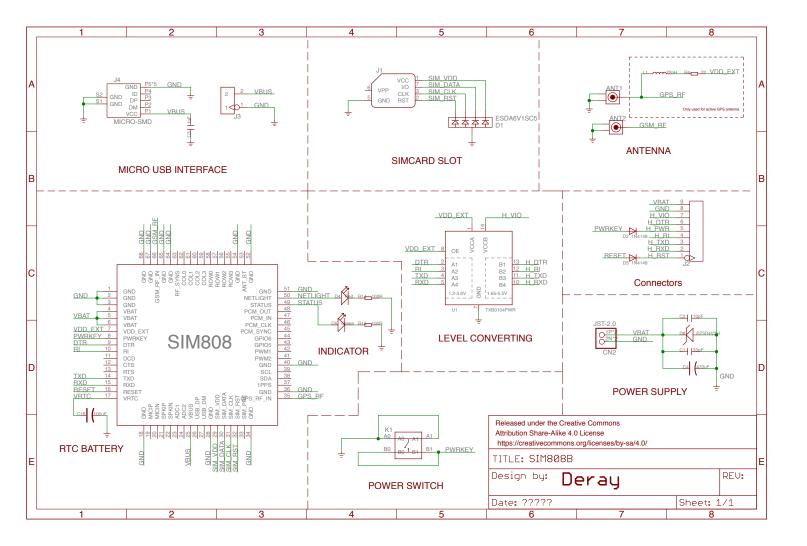
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com/design/literature.htm.

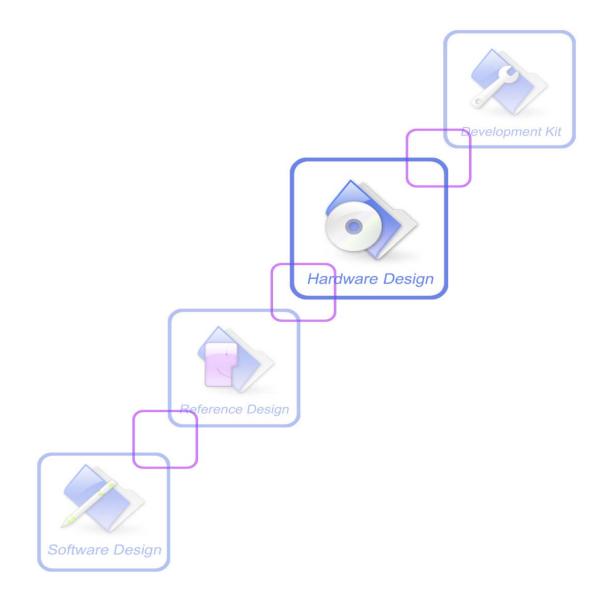
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details.

Intel, the Intel logo, Atom, Pentium, Quark, and Xeon are trademarks of Intel Corporation in the United States and other countries.


*Other names and brands may be claimed as the property of others.

Copyright © 2014 Intel Corporation. All rights reserved.

🛟 Please Recycle


331179-001

SIM808_Hardware Design_V1.00

Document Title	SIM808_Hardware_Design_V1.00
Version	1.00
Date	2014-03-27
Status	Release
Document Control ID	SIM808_Hardware Design

General Notes

SIMCom offers this information as a service to its customers, to support application and engineering efforts that use the products designed by SIMCom. The information provided is based upon requirements specifically provided to SIMCom by the customers. SIMCom has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by SIMCom within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of SIMCom Limited, copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © Shanghai SIMCom Wireless Solutions Ltd. 2014

SIM808 Hardware Design V1.00

Contents

Co	ontents		
Ve	ersion H	History	9
1	Intro	duction	
2	SIM8	808 Overview	
4	2.1	SIM808 Key Features	
2	2.2	Operating Modes	
2	2.3	SIM808 Functional Diagram	
3	Packa	age Information	
2	3.1	Pin out Diagram	
	3.2	Pin Description	
	3.3	Package Dimensions	
4	GSM	Application Interface	
	4.1	Power Supply	
	4.1.1	Power Supply Pin	21
	4.1.2		
4	1.2	Power on/down SIM808	
	4.2.1	Power on SIM808	
	4.2.2	Power down SIM808	
	4.2.3	Reset Function	
4	4.3	Power Saving Mode	
	4.3.1	Function Mode	
	4.3.2	Sleep Mode (AT+CSCLK=1)	
	4.3.3	Wake Up SIM808 from Sleep Mode (AT+CSCLK=1)	
4	1.4	Charging Interface	
	4.4.1	Battery Pack Characteristics	
	4.4.2	Recommended Battery Pack	
	4.4.3	Implemented Charging Technique	
	4.4.4	Operating Modes during Charging	
	4.4.5	Charger Requirements	
2	4.5	RTC Backup	
4	4.6	Serial Port and USB Interface	
	4.6.1		
	4.6.2	Serial Port	
	4.6.3	USB Interface	
	4.6.4		
	1.7	RI Behaviors	
2	4.8	Audio Interfaces	
	4.8.1	Speaker Interface Configuration	
	4.8.2	Microphone Interfaces Configuration	
	4.8.3	Audio Electronic Characteristics	
	4.8.4		
4	4.9	Bluetooth	

	i a	•••
	•	•••
	•	•••
-	N.C	om
-	щu	

4.9	0.1 Antenna Interface	39
4.10	SIM Card Interface	39
4.1	10.1 SIM Card Application	40
4.1	10.2 SIM Card Design Consideration	41
4.1	10.3 Design Considerations for SIM Card Holder	41
4.11	PCM Interface	43
4.1	11.1 PCM Multiplex Function	43
4.1	11.2 PCM Interface	44
4.1	11.3 LCD Display/SPI Interface	44
4.1	11.4 SD Card Interface	45
4.12	Keypad Interface	45
4.13	I2C BUS	47
4.1	13.1 General Purpose Input/Output (GPIO)	
4.14		
4.15	PWM	49
4.16	Network Status Indication	50
4.17	Operating Status Indication	50
4.18	RF Synchronization Signal	51
4.19	Antenna Interface	51
5 GI	PS Application Interface	52
5.1	GPS Operating Modes	52
5.2	CPS Power on/down Scenarios	53
5.2	2.1 Power on GPS engine	53
5.2	2.1 Power on GPS engine. 2.2 Power down GPS engine.	53
5.3	GPS Antenna Interface	53
5.3	3.1 GPS Antenna Interface	53
5.3	3.2 GPS Antenna Choice Consideration	53
6 El	ectrical, Reliability and Radio Characteristics	
6.1	Absolute Maximum Ratings	
6.2	Recommended Operating Conditions	
6.3	Digital Interface Characteristics	
6.4	SIM Card Interface Characteristics	
6.5	SIM_VDD Characteristics	
6.6	VDD EXT Characteristics	
6.7	VRTC Characteristics	
6.8	Current Consumption (VBAT = 4V, GPS engine is powered down)	
6.9	Electro-Static Discharge	
6.10	Radio Characteristics	
6.1	10.1 Module RF Output Power	
6.1	10.2 Module RF Receive Sensitivity	
6.1	10.3 Module Operating Frequencies	
	anufacturing	
7.1 7.2	Top and Bottom View of SIM808	
7.2	Typical Solder Reflow Profile	
	The Moisture Sensitivity Level	
7.4	Baking Requirements	
Appen	dix	63

Accessing of differen	Smart Machine Smart Decision
A. Related Documents	
B. Terms and Abbreviations	
C. Safety Caution	

Table Index

TABLE 1: SIM808 GSM/GPRS ENGINE KEY FEATURES	
TABLE 2: GPS ENGINE PERFORMANCE	
TABLE 3: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTER	FACE 12
TABLE 4: OVERVIEW OF OPERATING MODES	
TABLE 5: PIN DESCRIPTION	
TABLE 6: RECOMMENDED ZENER DIODE	
TABLE 7: ELECTRONIC CHARACTERISTIC OF THE RESET PIN	
TABLE 8: THE CURRENT CONSUMPTION OF FUNCTION MODES (BS-PA-MFRMS=	5)
TABLE 9: SPECIFICATION OF RECOMMENDED BATTERY PACK	
TABLE 10: SERIAL PORT AND USB PIN DEFINITION TABLE 11: SERIAL PORT CHARACTERISTICS	
TABLE 11: SERIAL PORT CHARACTERISTICS	
TABLE 12: SERIAL PORT CHARACTERISTICS	
TABLE 12: SERIAL PORT CHARACTERISTICS	
TABLE 14: AUDIO INTERFACE DEFINITION	
TABLE 15: MICROPHONE INPUT CHARACTERISTICS	
TABLE 16: AUDIO OUTPUT CHARACTERISTICS	
TABLE 17: SIM PIN DEFINITION	
TABLE 18: PIN DESCRIPTION (MOLEX SIM CARD HOLDER)	
TABLE 19: PIN DESCRIPTION (AMPHENOL SIM CARD HOLDER)	
TABLE 20: PCM PIN DEFINITION	
TABLE 21: PCM PIN SPECIFICATION	
TABLE 22: PCM MULTIPLEX FUNCTION	
TABLE 23: PIN DEFINITION OF THE KEYPAD INTERFACE	
TABLE 24: KEYPAD MULTIPLEX FUNCTION	
TABLE 25: PIN DEFINITION OF THE I2C	
TABLE 26: I2C MULTIPLEX FUNCTION	
TABLE 27: PIN DEFINITION OF THE GPIO	
TABLE 28: PIN DEFINITION OF THE ADC	
TABLE 29: ADC SPECIFICATION	
TABLE 30: PIN DEFINITION OF THE PWM	
TABLE 31: BUZZER OUTPUT CHARACTERISTICS	
TABLE 32: PWM MULTIPLEX FUNCTION	
TABLE 33: PIN DEFINITION OF THE NETLIGHT	
TABLE 34: STATUS OF THE NETLIGHT PIN	
TABLE 35: PIN DEFINITION OF THE STATUS	
TABLE 36: DEFINITION OF THE RF_SYNC PIN	
TABLE 37: AT COMMANDS FOR GPS FUNCTION	
TABLE 38: ABSOLUTE MAXIMUM RATINGS	
TABLE 39: RECOMMENDED OPERATING CONDITIONS	
TABLE 40: DIGITAL INTERFACE CHARACTERISTICS	
TABLE 41: SIM CARD INTERFACE CHARACTERISTICS	
TABLE 42: SIM_VDD CHARACTERISTICSSIM808_Hardware Design_V1.005	

TABLE 43: VDD_EXT CHARACTERISTICS	
TABLE 44: VRTC CHARACTERISTICS	
TABLE 45: GSM CURRENT CONSUMPTION [*]	
TABLE 46: THE ESD CHARACTERISTICS (TEMPERATURE: 25°C, HUMIDITY: 45 %)	
TABLE 47: SIM808 GSM 900 AND GSM 850 CONDUCTED RF OUTPUT POWER	
TABLE 48: SIM808 DCS 1800 AND PCS 1900 CONDUCTED RF OUTPUT POWER	
TABLE 49: SIM808 CONDUCTED RF RECEIVE SENSITIVITY	
TABLE 50: SIM808 OPERATING FREQUENCIES	
TABLE 51: MOISTURE CLASSIFICATION LEVEL AND FLOOR LIFE	
TABLE 52: BAKING REQUIREMENTS	
TABLE 53: RELATED DOCUMENTS	
TABLE 54: TERMS AND ABBREVIATIONS	
TABLE 55: SAFETY CAUTION	\
STHROM CONTRIBUTION	

Figure Index

FIGURE 1: SIM808 FUNCTIONAL DIAGRAM	
FIGURE 2: SIM808 PIN OUT DIAGRAM (TOP VIEW)	
FIGURE 3: DIMENSIONS OF SIM808 (UNIT: MM)	
FIGURE 4: RECOMMENDED PCB FOOTPRINT OUTLINE (UNIT: MM)	
FIGURE 5: REFERENCE CIRCUIT OF THE VBAT INPUT	
FIGURE 6: REFERENCE CIRCUIT OF THE LDO POWER SUPPLY	
FIGURE 7: REFERENCE CIRCUIT OF THE DC-DC POWER SUPPLY	
FIGURE 8: VBAT VOLTAGE DROP DURING TRANSMIT BURST	
FIGURE 9: THE MINIMAL VBAT VOLTAGE REQUIREMENT AT VBAT DROP	
FIGURE 10: POWERED ON/DOWN MODULE USING TRANSISTOR	
FIGURE 11: POWERED ON/DOWN MODULE USING BUTTON	
FIGURE 12: TIMING OF POWER ON MODULE	23
EICUDE 12, TIMING OF DOWED ON MODULE	22
FIGURE 14: TIMING OF POWER ON MODULE	24
FIGURE 15: RESET CIRCUIT	
FIGURE 16: RESET TIMING SEQUENCE	
FIGURE 10: RESET TIMING SEQUENCE	
FIGURE 17: SIM808 WITH BATTERT CHARGER AND PACK CONNECTION	
FIGURE 19: RTC SUPPLY FROM NON-CHARGEABLE BATTERY	
FIGURE 19: RTC SUPPLY FROM NON-CHARGEABLE BATTERY	
FIGURE 21: SEIKO XH414H-IV01E CHARGE-DISCHARGE CHARACTERISTIC	
FIGURE 22: CONNECTION OF THE SERIAL PORT	
FIGURE 23: LEVEL CONVERTING BY RESISTOR	
FIGURE 24: ISOLATION CIRCUIT BY DIODES	
FIGURE 25: TX LEVEL CONVERTING BY TRANSISTOR	
FIGURE 26: RX LEVEL CONVERTING BY TRANSISTOR	
FIGURE 27: USB REFERENCE CIRCUIT	
FIGURE 28: RI BEHAVIOUR OF VOICE CALLING AS A RECEIVER	
FIGURE 29: RI BEHAVIOUR OF DATA CALLING AS A RECEIVER	
FIGURE 30: RI BEHAVIOUR OF URC OR RECEIVE SMS	
FIGURE 31: RI BEHAVIOUR AS A CALLER	
FIGURE 32: SPEAKER REFERENCE CIRCUIT	
FIGURE 33: SPEAKER WITH AMPLIFIER REFERENCE CIRCUIT	
FIGURE 34 : MICROPHONE REFERENCE CIRCUIT	
FIGURE 35: BLUETOOTH ANTENNA MATCHING CIRCUIT	
FIGURE 36: REFERENCE CIRCUIT OF THE 8-PIN SIM CARD HOLDER	
FIGURE 37: REFERENCE CIRCUIT OF THE 6-PIN SIM CARD HOLDER	
FIGURE 38: MOLEX 91228 SIM CARD HOLDER	
FIGURE 39: AMPHENOL C707 10M006 5122 SIM CARD HOLDER	
FIGURE 40: PCM REFERENCE CIRCUIT	
FIGURE 41: LCD REFERENCE CIRCUIT	
FIGURE 42: SD REFERENCE CIRCUIT	
FIGURE 43: TRADITIONAL KEYPAD REFERENCE CIRCUIT	
FIGURE 44: EXTENDED KEYPAD REFERENCE CIRCUIT	
FIGURE 45: ENHANCE THE ESD PERFORMANCE OF KEYPAD CIRCUIT	
FIGURE 46: KEYPAD DETECTED	
FIGURE 47: REFERENCE CIRCUIT OF PWM DRIVE BUZZER	
SIM808_Hardware Design_V1.00 7	2014.03.27

SIM Com Accemptor of alle fast	Smart Machine Smart Decision
FIGURE 48: REFERENCE CIRCUIT OF NETLIGHT	
FIGURE 49: RF_SYNC SIGNAL DURING TRANSMIT BURST	
FIGURE 50: GSM ANTENNA MATCHING CIRCUIT	
FIGURE 51: GPS ANTENNA MATCHING CIRCUIT	
FIGURE 52: TOP AND BOTTOM VIEW OF SIM808	61
FIGURE 53: TYPICAL SOLDER REFLOW PROFILE	

MOM

Version History

Date	Version	Description of change	Author
2014-03-27	1.00	Origin	ShengWu.Sun
			Xuegang.Wang
			XY
	\sim		
	AV-		
Ċ	Y Y		

1 Introduction

This document describes SIM808 hardware interface in great detail. This document can help user to quickly understand SIM808 interface specifications, electrical and mechanical details. With the help of this document and other SIM808 application notes, user guide, users can use SIM808 to design various applications quickly.

2 SIM808 Overview

Designed for global market, SIM808 is integrated with a high performance GSM/GPRS engine, a GPS engine and a BT engine. The GSM/GPRS engine is a quad-band GSM/GPRS module that works on frequencies GSM 850MHz, EGSM 900MHz, DCS 1800MHz and PCS 1900MHz. SIM808 features GPRS multi-slot class 12/ class 10 (optional) and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. The GPS solution offers best-in-class acquisition and tracing sensitivity, Time-To-First-Fix (TTFF) and accuracy.

With a tiny configuration of 24*24*2.6mm, SIM808 can meet almost all the space requirements in user applications, such as M2M, smart phone, PDA, tracker and other mobile devices.

SIM808 has 68 SMT pads, and provides all hardware interfaces between the module and customers' boards.

- Support 4*4*2 keypads.
- One full modem serial port.
- One USB, the USB interfaces can debug, download software
- Audio channels which include a microphone input and a receiver output.
- One SIM card interface.
- Charging interface.
- Programmable general purpose input and output.
- Support Bluetooth function.
- Support PWM and ADC.
- PCM/SPI/SD card interface, only one function can be accessed synchronously. (Default function is PCM).

SIM808 is designed with power saving technique so that the current consumption is as low as 1mA in sleep mode (GPS engine is powered down).

SIM808 integrates TCP/IP protocol and extended TCP/IP AT commands which are very useful for data transfer applications. For details about TCP/IP applications, please refer to *document* [2].

2.1 SIM808 Key Features

Feature	Implementation
Power supply	$3.4V \sim 4.4V$
Power saving	Typical power consumption in sleep mode is 1mA (BS-PA-MFRMS=9, GPS engine is powered down)
Charging	Supports charging control for Li-Ion battery
Frequency bands	• SIM808 Quad-band: GSM 850, EGSM 900, DCS 1800, PCS 1900. SIM808

Table 1: SIM808 GSM/GPRS engine key features

	 can search the 4 frequency bands automatically. The frequency bands also can be set by AT command "AT+CBAND". For details, please refer to <i>document [1]</i>. Compliant to GSM Phase 2/2+ 		
Transmitting power	 Class 4 (2W) at GSM 850 and EGSM 900 Class 1 (1W) at DCS 1800 and PCS 1900 		
GPRS connectivity	 GPRS multi-slot class 12 (default) GPRS multi-slot class 1~12 (optional) 		
Temperature range	 Normal operation: -40°C ~ +85°C Storage temperature -45°C~ +90°C 		
Data GPRS	 GPRS data downlink transfer: max. 85.6 kbps GPRS data uplink transfer: max. 85.6 kbps Coding scheme: CS-1, CS-2, CS-3 and CS-4 PAP protocol for PPP connect Integrate the TCP/IP protocol. Support Packet Broadcast Control Channel (PBCCH) CSD transmission rates: 2.4, 4.8, 9.6, 14.4 kbps 		
CSD	Support CSD transmission		
USSD	Unstructured Supplementary Services Data (USSD) support		
SMS	 MT, MO, CB, Text and PDU mode SMS storage: SIM card 		
SIM interface	Support SIM card: 1.8V, 3V		
External antenna	Antenna pad		
Audio features	 Speech codec modes: Half Rate (ETS 06.20) Full Rate (ETS 06.10) Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80) Adaptive multi rate (AMR) Echo Cancellation Noise Suppression 		
Serial port and USB interface	 Serial port: Full modem interface with status and control lines, unbalanced, asynchronous. 1200bps to 115200bps. Can be used for AT commands or data stream. Support RTS/CTS hardware handshake and software ON/OFF flow control. Multiplex ability according to GSM 07.10 Multiplexer Protocol. Autobauding supports baud rate from 1200 bps to 115200bps. USB interface: Can be used as debugging and firmware upgrading. 		
Phonebook management	Support phonebook types: SM, FD, LD, RC, ON, MC.		
SIM application toolkit	GSM 11.14 Release 99		
Real time clock	Support RTC		
Alarm function	Can be set by AT command		
Physical characteristics	Size: 24*24*2.6mm Weight: 3.5g		

Firmware upgrade

Firmware upgrading by USB interface.

Table 2: GPS engine Performance

Parameter	Description	Performance			
rarameter	Description	Min	Туре	Max	Unit
Horizontal Position Accuracy(1)	Autonomous		<2.5		m
Velocity	Without Aid		0.1		m/s
Accuracy(2)	DGPS		0.05		m/s
Acceleration	Without Aid		0.1		m/s ²
Accuracy	DGPS		0.05		m/s ²
Timing Accuracy			10		nS
Dynamic	Maximum Altitude			18000	m
Performance	Maximum Velocity			515	m/s
	Maximum Acceleration			4	G
Time To First Fix ⁽³⁾	Hot start		1		S
	Warm start		28		S
	Cold start		30		S
Sensitivity	Autonomous acquisition(cold start)		-147		dBm
	Re-acquisition		-159		dBm
	Tracking		-165		dBm
Receiver	Channels		22/66		
	Update rate			5	Hz
	Tracking L1, CA Code				
	Protocol support NMEA				
Power	Acquisition		42		mA
consumption ⁽⁴⁾	Continuous tracking		24		mA

(1) 50% 24hr static, -130dBm

(2) 50% at 30m/s

(3) GPS signal level: -130dBm

(4) Single Power supply 3.8V@-130dBm,GSM IDLE

Table 3: Coding schemes and maximum net data rates over air interface

Coding scheme	1 timeslot	2 timeslot	4 timeslot
CS-1	9.05kbps	18.1kbps	36.2kbps
CS-2	13.4kbps	26.8kbps	53.6kbps
CS-3	15.6kbps	31.2kbps	62.4kbps
CS-4	21.4kbps	42.8kbps	85.6kbps

2.2 Operating Modes

The table below summarizes the various operating modes of SIM808.

Table 4: Overview of operating modes

Mode	Function			
	GSM/GPRS SLEEP	Module will automatically go into sleep mode if the conditions of sleep mode are enabling and there is no on air and no hardware interrupt (such as GPIO interrupt or data on serial port). In this case, the current consumption of module will reduce to the minimal level. In sleep mode, the module can still receive paging message and SMS.		
	GSM IDLE	Software is active. Module registered to the GSM network, and the module is ready to communicate.		
Normal operation	GSM TALK	Connection between two subscribers is in progress. In this case, the power consumption depends on network settings such as DTX off/on, FR/EFR/HR, hopping sequences, antenna.		
	GPRS STANDBY	Module is ready for GPRS data transfer, but no data is currently sent or received. In this case, power consumption depends on network settings and GPRS configuration.		
	GPRS DATA	There is GPRS data transfer (PPP or TCP or UDP) in progress. In this case, power consumption is related with network settings (e.g. power control level); uplink/downlink data rates and GPRS configuration (e.g. used multi-slot settings).		
	Charge	The mode support charge function (Default is not support).		
Power down	Normal power down by sending the AT command "AT+CPOWD=1" or using the PWRKEY. The power management unit shuts down the power supply for the baseband part of the module, and only the power supply for the RTC is remained. Software is not active. The serial port is not accessible. Power supply (connected to VBAT) remains applied.			
Minimum functionality mode	AT command "AT+CFUN" can be used to set the module to a minimum functionality mode without removing the power supply. In this mode, the RF part of the module will not work or the SIM card will not be accessible, or both RF part and SIM card will be closed, and the serial port is still accessible. The power consumption in this mode is lower than normal mode.			
5				

2.3 SIM808 Functional Diagram

The following figure shows a functional diagram of SIM808:

- The GSM baseband engine
- The GPS engine
- Flash
- The GSM radio frequency part
- The antenna interface
- The other interfaces

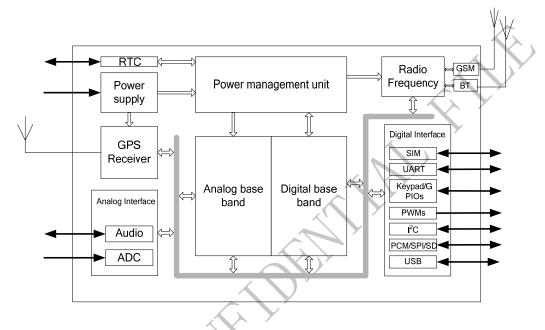


Figure 1: SIM808 functional diagram

STACOM

3 Package Information

3.1 Pin out Diagram

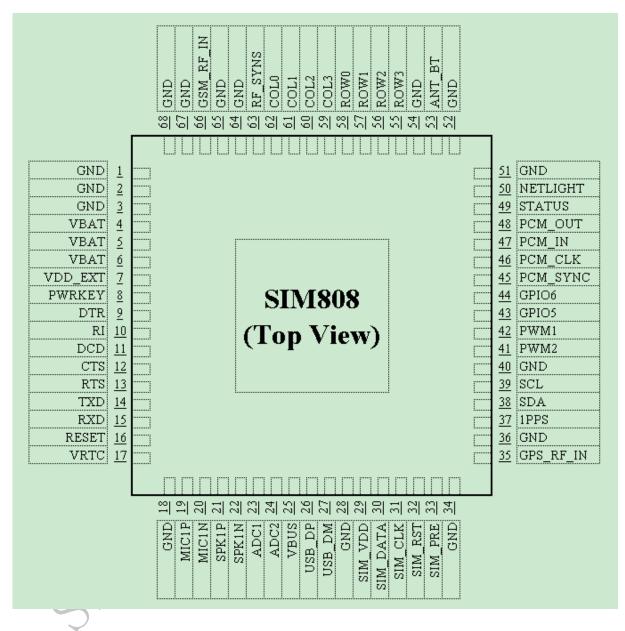
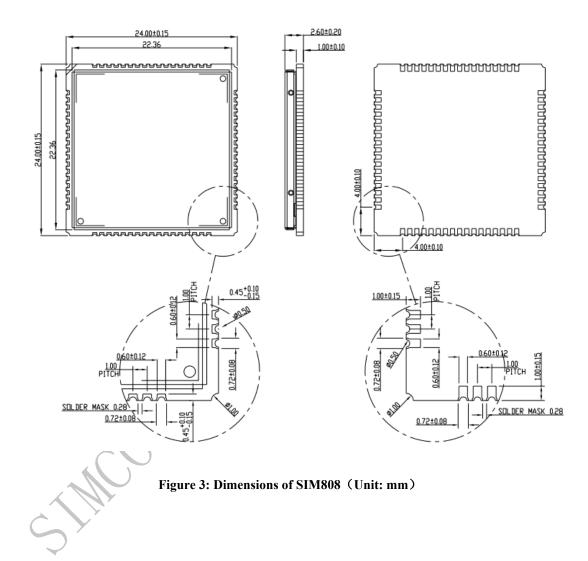


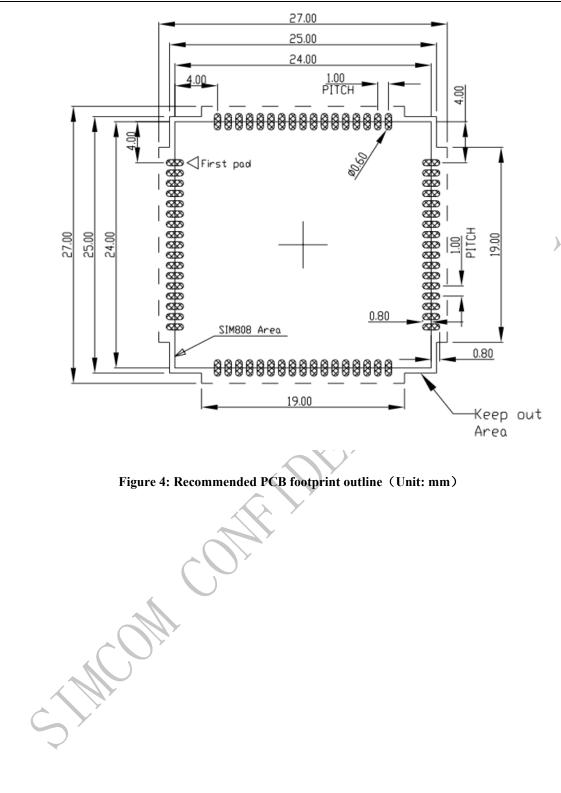
Figure 2: SIM808 pin out diagram (Top view)

3.2 Pin Description

Table 5: Pin description

Pin name	Pin number	I/O	Description	Comment	
Power supply					
VBAT	4,5,6	I	SIM808 supplies 3 VBAT pins, and the power range is from 3.4V to 4.4V. Power supply should provide sufficient current so that the module can work normally; the peak current is nearly 2A.	Zener diode is Strongly recommended to anti surge on VBAT.	
VRTC	17	I/O	Power supply for RTC	It is recommended to connect VRTC to a battery or a capacitor (e.g. 4.7uF).	
VDD_EXT	7	0	2.8V power output	Keep floating if unused.	
GND	1,2,3,18,28,34 ,36,40,51,52,5 4,64,65,67,68		Ground	Recommend connecting 1,2,3pin to the power GND.	
Power on/off					
PWRKEY	8	PWRKEY should be pulled low at le I second and then released to power on/dow module.		Internally pulled up to VBAT.	
Audio interface					
MIC1P	19	Ι	Differential audio input		
MIC1N	20	1		Keep floating if	
SPK1P	21	0	Differential audio output	unused.	
SPK1N	22				
PCM interface					
PCM_OUT	48	0			
PCM_IN	47	Ι	PCM interface for audio	Keep floating if	
PCM_SYNC	45	0		unused.	
PCM_CLK	46	Ι			
Keypad interface					
COL3	59	Ι			
COL2	60	Ι			
COL1	61	Ι		Keep floating if	
COL0	62	Ι	Support up to 32 buttons (4*4*2)	unused. (COL0 can	
ROW3	55	0		not be pulled down).	
ROW2	56	0			
ROW1	57	0			
ROW0	58	0			




GPIOS43IOprogrammable general purpose input and OInternet output.GPIOS44IOoutput.Can not multiplex with GPIO function.NETLIGHT500Nework statusGPIO function.STATUS490Power on statusGPIO function.Stratus91Data terminal readyNework statusRI91ORata carrier detectNework statusCTS120Clear to sendunused.TXD14OTamsmit datanused.RXD15IReceive datanused.VBUS251Nework statusnused.USB DP26IOPohga and finnware upgradingKeep floating if unused.MSC15IPohga and finnware upgradingunused.VBUS251Nework statusnused.NSR DP26IOPohga and finnware upgradingunused.VBUS251Nework statusnused.Status23IOPotacevital modulation, multiplex with GPIO4Keep floating if unused.MSR DP23OPulse-width modulation, multiplex with GPIO5Nework statusStatus31OIC serial bus dataInternal pulled up to soft statusMSR DP23OIC serial bus dataInternal pulled up to soft statusStatus31IOStatusAll signal STM soft statusMSR DP23IO </th <th>GPIO</th> <th></th> <th></th> <th></th> <th></th>	GPIO					
NETLIGHT50ONetwork statusCan not multiplex with GPIO function.STATUS49OPower on statusGPIO function.Serial portData terminal ready RIIoOBTR9IData terminal ready RIDTR9IOAta terminal ready RIDCD11OData carrier detectCTS12OClear to sendTXD14OTransmit dataTXD14OTransmit dataRXD25I </td <td>GPIO5</td> <td>43</td> <td>I/O</td> <td>Programmable general purpose input and</td> <td></td>	GPIO5	43	I/O	Programmable general purpose input and		
STATUS490Power on statusGPIO function.Serial portJERIA 100Data terminal readyRI100Ring indicatorDCD110Data carrier detectCTS120Clear to sendunused.RTS131Request to sendunused.TXD140Transmit dataunused.RTS131Receive dataunused.VBUSDEbug and firmware upgradingKeep floating if unused.USB_DP2610Debug and firmware upgradingKeep floating if unused.USB_DM2710Debug and firmware upgradingKeep floating if unused.ADC123110 bit general analog to digital converterKeep floating if unused.PWM1420Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.SIM_OTOSIM_OTOSIM_OTOO 12 Serial bus dataInternal visital converterSIM_OTOSIM of 12 Cserial bus dataInternal visital convertorSIM OTOO 12 Serial bus clockSIM_OTOSIM ota in purfor the convertionSIM ota in purfor the convertionO 12 Serial bus clockSIM ota in purfor the convertion <td cols<="" td=""><td>GPIO6</td><td>44</td><td>I/O</td><td>output.</td><td></td></td>	<td>GPIO6</td> <td>44</td> <td>I/O</td> <td>output.</td> <td></td>	GPIO6	44	I/O	output.	
Brite Opt Point Forwards DSR 9 1 Data terminal ready RI 10 0 Ring indicator DCD 11 0 Data cernire detect Image: second control of the status CTS 12 0 Clear to send Image: second control of the status TXD 14 0 Transmit data Image: second control of the status RTS 13 1 Request to send Image: second control of the status TXD 14 0 Transmit data Image: second control of the status RTS 13 1 Request to send Image: second control of the status TXD 14 0 Transmit data Image: second control of the status RTS 15 1 Request to send Image: second control of the status USB DP 26 10 Debug and firmware upgrading Image: second control of the unused. USB DP 26 10 Pelbag second control of the unused. Image: second control of the unused. DCD 23	NETLIGHT	50	0	Network status	Can not multiplex with	
DTR91Data terminal readyRI100Ring indicatorDCD110Data carrier detectCTS120Clear to sendRTS131Request to sendTXD140Transmit dataRXD151Receive dataUnused.Unused.REF in the transmit dataRXD251USB_DP2610Debug and firmware upgradingterp floating if unused.USB_DM2710Debug and firmware upgradingKeep floating if unused.NDC1231ADC2241O bit general analog to digital converterMVM1420Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.UUSE-VENTURESDA38IOPUMI42OPulse-width modulation, multiplex with GPIO4.Internal pulled up to 2.8V via 4.7KΩSDA38IOSIM eddaInternal pulled up to 2.8V via 4.7KΩSIM internaSIM internaSIM colsSIM colsSIM cols <td colsp<="" td=""><td>STATUS</td><td>49</td><td>0</td><td>Power on status</td><td>GPIO function.</td></td>	<td>STATUS</td> <td>49</td> <td>0</td> <td>Power on status</td> <td>GPIO function.</td>	STATUS	49	0	Power on status	GPIO function.
RI100Ring indicatorDCD110Data carrier detectCTS120Clear to sendunused.RTS131Request to sendunused.RTD140Transmit dataunused.RXD151Receive dataUSB interfaceVBUS251USB DP26I/ODebug and firmware upgradingKeep floating if unused.Keep floating if unused.ADC1231ADC224PPWM142OPulse-width modulation, multiplex with GPI04. uused.Keep floating if uused.UUSB DP24OPulse-width modulation, multiplex with GPI04. uused.Keep floating if uused.Keep floating if uused.Motion multiplex with GPI04. uused.Keep floating if uused.Motion multiplex with GPI04. UUSB DDSIM PMDOPulse-width modulation, multiplex with GPI04. UUSB SIM PATASIM colsSIM colsSIM colsSIM RETSIM RETSIM RETSIM RETSIM colsSIM colsSIM colsSI	Serial port					
DCDI1OData carrier detectCTS12OClear to sendmusel,RTS13IRequest to sendmused,TXD14OTransmit datamused,RXD15IReceive datamused,USB interfaceUSB interfaceColspan="4">Keep floating if unused.Mathematication multiple with GPIO4Keep floating if unused.Meter floating if unused.Meter floating if unused.PWM142OPulse-with modulation, multiplex with GPIO4.Keep floating if unused.Meter floating if unused.STOSUMOPulse-with modulation, multiplex with GPIO4.Keep floating if unused.STOSUMSUMSUM <t< td=""><td>DTR</td><td>9</td><td>Ι</td><td>Data terminal ready</td><td></td></t<>	DTR	9	Ι	Data terminal ready		
CTS120Clear to sendKeep unused.floating if unused.RTS131Request to sendunused.TXD140Transmit dataunused.RXD151Receive dataVBUS251USB_DM2610Deug and firmware upgradingKeep unused.QBD2610Deug and firmware upgradingKeep unused.ADC231Poit general analog to digital converterKeep unused.ADC1231Poit general analog to digital converterKeep unused.PWM1420Pulse-width modulation, multiplex with GPIO3Keep unused.PWM1420Pulse-width modulation, multiplex with GPIO3Keep unused.SIMSIM interfaceSIM vDD29020 cerial bus data 3V for SIM cardAll signals of SIM interface should be protected against ESDSIM_VDD290SIM card detectionAntenaInternal pulled up to SIM cardSIM vestSIM colspan="4">A sit detectionAntenaInternal pulled up to SV for SIM cardSIM colspan="4">A sit detectionAntenaSIM colspan="4">A sit detectionA sit detectionA sit detectionA sit det	RI	10	0	Ring indicator		
InitialInitialInitialInitialRTS13IRequest to sendInitialTXD14OTransmit dataInitialRXD15IReceive dataInitialUSB interfaceInitialPeug and firmware upgradingKeep floating if unused.USB_DP26I/OPeug and firmware upgradingKeep floating if unused.ADC123IPeug and firmware upgradingKeep floating if unused.ADC224PPulse-width modulation, multiplex with GPIO4.Keep floating if unused.PWM142OPulse-width modulation, multiplex with GPIO3.Keep floating if unused.PWM241OPulse-width modulation, multiplex with GPIO3.Keep floating if unused.ICICICICICInternal pulled up to ICSCL39OIC Serial bus clock2.8V via 4.7KOSIM_VDD29OSIM clockarray.SIM_PATA30I/OSIM card detectionarray.SIM_PESENCE31OSIM card detectionarray.SIM_PESENCE35I/OConnect GSM antennaImpendence must be controlled to 500.ANT_BT53I/OConnect GPS antennaImpendence must be controlled to 500.RF_synchronizatioInternale Controlled to 500.Impendence must be controlled to 500.RFSimSimImpendence must be controlled to 500.Impendence must be controlled to 500.	DCD	11	0	Data carrier detect		
NLS151CRequest to sendTXD140Transmit dataTXD140Transmit dataRXD151Receive dataUSB interfaceVBUS25IUSB_DM271/0Debug and firmware upgradingKeep floating if unused.USB_DM271/0Debug and firmware upgradingKeep floating if unused.ADC23110 bit general analog to digital converterKeep floating if unused.ADC1230Pulse-width modulation, multiplex with GPI04.Keep floating if unused.PWM20Pulse-width modulation, multiplex with GPI04.Keep floating if unused.PWM2410Pulse-width modulation, multiplex with GPI04.Keep floating if unused.SDA381/012C serial bus dataInternal pulled up to SCLSCL39012C serial bus clock2.8V via 4.7KΩSIM_VDD290SIM data input/outputAll signals of SIM interface should be protected against ESDSIM_CLK310SIM card detectionarray.SIM_RESENCE33ISIM card detectionarray.Antenna1/0SIM card detectionarray.Antenna1/0Connect GSM antennaImpendence must be controlled to 500.Ant_BT35IConnect GPS antennaImpendence must be controlled to 500.RF synchronizativ1Connect GPS an	CTS	12	0	Clear to send	Keep floating if	
RXD15IReceive dataUSB interfaceVBUS25IIUSB_DP26I/ODebug and firmware upgradingKeep_ floating_ ifUSB_DM27I/ODebug and firmware upgradingKeep_ floating_ ifUSB_DM27I/ODif general analog to digital converterKeep_ floating_ ifADC123IDif general analog to digital converterKeep_ floating_ ifADC224OPulse-width modulation, multiplex with GPIO4.Keep_ floating_ ifMWM42OPulse-width modulation, multiplex with GPIO3.Keep_ floating_ ifPWM241OPulse-width modulation, multiplex with GPIO3.Keep_ floating_ ifSDA38I/O12C serial bus dataInternal pulled up toSCL39O12C serial bus clock2.8V via 4.7KOSIM_VDD29OSIM cardAll signals of SIM interface should beSIM_VDD29OSIM card detectionarray.SIM_RST32OSIM card detectionarray.SIM_RST32OSIM card detectionarray.AttematI/OSIM card detectionarray.AttematJOConnect GSM antennaImpendence must be controlled to SOQ.ANT_BT33I/OConnect GSM antennaImpendence must be controlled to SOQ.GSM_RF_IN35IConnect GSM antennaImpendence must be controlled to SOQ.RFSYnchronizetII	RTS	13	Ι	Request to send	unused.	
USB interfaceVBUS251USB_DP2610Debug and firmware upgradingKeep floating if unused.USB_DM2710Debug and firmware upgradingKeep floating if unused.MDCI231D bit general analog to digital converterKeep floating if unused.MDC1231D bit general analog to digital converterKeep floating if unused.MOMPWMPWM2410Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.SIMSOL381/0I2C serial bus dataInternal pulled up to 32.8V via 4.7K\OmegaSIM_VDD290Voltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESD with a TVS diode array.SIM_CLK310SIM card detectionAltennaImpendence must be controlled to 50Ω.Impendence must be controlled to 50Ω.	TXD	14	0	Transmit data		
VBUS251ImplementationKeep floating if unused.USB_DP261/0Debug and firmware upgradingKeep floating if unused.USB_DM271/010 bit general analog to digital converterKeep floating if unused.ADC123110 bit general analog to digital converterKeep floating if unused.ADC2240Pulse-width modulation, multiplex with GPIOA.Keep floating if unused.PWM410Pulse-width modulation, multiplex with GPIOA.Keep floating if unused.PWM2410Pulse-width modulation, multiplex with GPIOA.Keep floating if unused.SDA381/012C serial bus dataInternal pulled up to oSCL39012C serial bus clock2.8V via 4.7K\OmegaSIM_VDD290Voltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESDSIM_DATA301/0SIM clockwith a TVS diode array.SIM_RST320SIM card detectionarray.MERESENCE331SIM card detectionarray.AntennaInopendence must be controlled to 50Q.Inopendence must be controlled to 50Q.ANT_BT33I/0Connect GPS antennaImpendence must be controlled to 50Q.RF synchronization1Connect GPS antennaImpendence must be controlled to 50Q.RF synchronization1Connect GPS antennaImpendence must be controlled to 50Q.	RXD	15	Ι	Receive data		
USB_DP261/ODebug and firmware upgradingKeep unused.USB_DM271/ODebug and firmware upgradingKeep unused.ADC23111bit general analog to digital converterKeep floating if unused.ADC2240Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.PWM420Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.PWM2410Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.SDA381/OI2C serial bus dataInternal pulled up to 2.8V via 4.7KQSCL390I2C serial bus clock2.8V via 4.7KQSIM_VDD290Voltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESDSIM_CLK310SIM clockarray.SIM_RST320SIM card detectionarray.SIM_RF_IN661/OConnect GSM antennaImpendence must be controlled to 50Q.ANT_BT531/OConnect GPS antennaImpendence must be controlled to 50Q.RF synchronization1Connect GPS antennaImpendence must be controlled to 50Q.	USB interface					
USB_DP261/ODebug and firmware upgradingunused.USB_DM271/O1/O1/O1/O1/OADC23110 bit general analog to digital converterKeep floating if unused.ADC2240Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.PWM420Pulse-width modulation, multiplex with GPIO3.unused.PWM2410Pulse-width modulation, multiplex with GPIO3.unused.IC50A381/O12C serial bus dataInternal pulled up to 2.8V via 4.7KQSCL39012C serial bus clock2.8V via 4.7KQSIM_VDD290Voltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interfaceSIM_VDD290SIM clockarray.array.SIM_RST320SIM clockarray.SIM_RST320SIM card detectionwith a TVS diode array.Antenna1/OSIM card detectionmineface controlled to 50Q.ANT_BT531/OConnect GSM antennaImpedence must be controlled to 50Q.GPS_RF_IN351Connect GPS antennaImpedence must be controlled to 50Q.RF synchronizatio1/OConnect GPS antennaImpedence must be controlled to 50Q.	VBUS	25	Ι			
USB_DM271/0Internal controlADCADC123 (ADC)110 bit general analog to digital converterKeep floating it unused.ADC2240Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.PWM420Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.PWM2410Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.DVM2410Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.DVM2381/0I2C serial bus dataInternal pulled up to 2.88 via 4.7KQSDA381/0I2C serial bus clock2.88 via 4.7KQSIM_VDD290Voltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be 3V for SIM cardSIM_VDD290SIM clockarray.All signals of SIM interface should be 30 SIM clockSIM_RST320SIM card detectionarray.SIM_RST320SIM card detectionImpendence must be controlled to 50Q.Antenna1/0Connect GSM antennaImpendence must be controlled to 50Q.ANT_BT351Connect GPS antennaImpendence must be controlled to 50Q. Representation 1Connect GPS antennaImpendence must be controlled to 50Q. Representation 1Connect GPS antennaImpendence must be controlled to 50Q.	USB_DP	26	I/O	Debug and firmware upgrading	1 0	
ADC123210 bit general analog to digital converterKeep floating if unused.ADC2240Puble-enclosital converterWeip unused.PWM420Pulse-width modulation, multiplex with GPIO4. puble-width modulation, multiplex with GPIO3.Keep floating if unused.PWM2410Pulse-width modulation, multiplex with GPIO3.Keep floating if unused.PWM2410Pulse-width modulation, multiplex with GPIO3.Keep floating if unused.SDA381/0I2C serial bus data sclcInternal pulled up to 2.8V via 4.7KΩSDA381/0I2C serial bus clock2.8V via 4.7KΩSIM_vDD290Voltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESDSIM_VDD290SIM clockwith a TVS diode atray.SIM_CLK310SIM clockatray.SIM_RST320SIM card detectionatray.SIM_REIN661/0Connect GSM antennaImpendence must be controlled to 50Ω.ANT_BT531/0Connect GPS antennaImpendence must be controlled to 50Ω.FF synchronizatio1Connect GPS antennaImpendence must be controlled to 50Ω.	USB_DM	27	I/O		unuscu.	
ADC224110 bit general analog to digital converterunused.PWMunused.unused.PWM1420Pulse-width modulation, multiplex with GPIO4.Keep floating if unused.PWM2410Pulse-width modulation, multiplex with GPIO3.Keep floating if unused.IDEIDEIDEIDEIDESDA38I/OI2C serial bus dataInternal pulled up to 2.8V via 4.7KΩSCL39OI2C serial bus clock2.8V via 4.7KΩSIM_VDD29QVoltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESDSIM_VDD29QVoltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESDSIM_VDD29QSIM clockarray.SIM_RST32OSIM card detectionAntennaIDEIDEGSM_RF_IN66I/OConnect GSM antennaImpendence must be controlled to 50Ω.ANT_BT53I/OConnect GPS antennaImpendence must be controlled to 50Ω.FF synchronizationIDEIDEIDE	ADC					
ADC224Put of the transference of transf	ADC1	23	T	10 hit succession to disite i sourcestor	Keep floating if	
PWM142OPulse-width modulation, multiplex with GPIO4.Keep floating if unused.PWM241OPulse-width modulation, multiplex with GPIO3.Keep floating if unused.IIIIOPulse-width modulation, multiplex with GPIO3.Keep floating if unused.IIIIIIIIIIIIIISDA38I/OI2C serial bus dataInternal pulled up to 2.8V via 4.7KΩSCL39OI2C serial bus clockZ.8V via 4.7KΩSIM interfaceIIIIIIIIIIIII signals of SIM interface should be protected against ESDSIM_VDD29OVoltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESDSIM_DATA30I/OSIM data input/outputprotected against ESD with a TVS diode array.SIM_REST32OSIM card detectionIIIAntennaIIISIM card detectionIIIGSM_RF_IN66I/OConnect GSM antennaImpendence must be controlled to 50Ω.ANT_BT53I/OConnect GPS antennaImpendence must be controlled to 50Ω.FrynchronizationIIConnect GPS antennaImpendence must be controlled to 50Ω.RF synchronizationIIIConnect GPS antennaImpendence must be controlled to 50Ω.	ADC2	24	1	10 bit general analog to digital converter	unused.	
PWM241OPulse-width modulation, multiplex with GPIO3.unused.I2CSDA38I/OI2C serial bus dataInternal pulled up to 2.8V via 4.7KΩSCL39OI2C serial bus clock2.8V via 4.7KΩSIM interfaceSIM_VDD29OVoltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESDSIM_DATA30I/OSIM data input/outputprotected against ESD with a TVS diode array.SIM_CLK31OSIM clockwith a TVS diode array.SIM_PRESENCE33ISIM card detectionImpendence must be controlled to 50Ω.AntennaConnect GSM antennaImpendence must be controlled to 50Ω.GSM_RF_IN66I/OConnect GPS antennaImpendence must be controlled to 50Ω.GPS_RF_IN35IConnect GPS antennaImpendence must be controlled to 50Ω.Fr synchronizationIConnect GPS antennaImpendence must be controlled to 50Ω.	PWM			•		
NumberNume	PWM1	42	0	Pulse-width modulation, multiplex with GPIO4.	Keep floating if	
SDA38I/OI2C serial bus dataInternal pulled up to 2.8V via 4.7KΩSCL39OI2C serial bus clock2.8V via 4.7KΩSIM interfaceSIM_VDD29OVoltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESDSIM_DATA30I/OSIM data input/outputAll signals of SIM interface should be protected against ESDSIM_CLK31OSIM clockwith a TVS diode array.SIM_RST32OSIM card detectionImpendence must be controlled to 50Ω.AntennaInspendence must be controlled to 50Ω.Impendence must be controlled to 50Ω.ANT_BT53I/OConnect GPS antennaImpendence must be controlled to 50Ω.FF synchronizationIConnect GPS antennaImpendence must be controlled to 50Ω.RF synchronizationIConnect GPS antennaImpendence must be controlled to 50Ω.	PWM2	41	0	Pulse-width modulation, multiplex with GPIO3.	unused.	
SCL39OI2C serial bus clock2.8V via 4.7KΩSIM interfaceSIM_VDD29OVoltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESDSIM_DATA30I/OSIM data input/outputprotected against ESD with a TVS diode array.SIM_RST32OSIM clockarray.SIM_PRESENCE33ISIM card detectioninterface should be protected against ESD with a TVS diode array.Antenna	I2C			•		
SOLEDVDVNote strike outset over a strike outset outset over a strike outset over a strike outset outset outset over a strike outset o	SDA	38	I/O	I2C serial bus data	Internal pulled up to	
SIM_VDD29OVoltage supply for SIM card. Support 1.8V or 3V for SIM cardAll signals of SIM interface should be protected against ESD with a TVS diode array.SIM_DATA30I/OSIM data input/outputwith a TVS diode array.SIM_CLK31OSIM clockarray.SIM_RST32OSIM resetot array.SIM_PRESENCE33ISIM card detectionot array.Impendence must be controlled to 50Q.ANT_BT53I/OConnect GSM antennaImpendence must be controlled to 50Q.GPS_RF_IN35IConnect GPS antennaImpendence must be controlled to 50Q.RF synchronizationIConnect GPS antennaImpendence must be controlled to 50Q.	SCL	39	0	I2C serial bus clock	2.8V via 4.7KΩ	
SIM_VDD2903V for SIM cardinterface should beSIM_DATA30I/OSIM data input/outputinterface should beSIM_CLK31OSIM clockwith a TVS diodeSIM_RST32OSIM resetarray.SIM_PRESENCE33ISIM card detectioninterface should beAntennaSIM card detectioninterface should beGSM_RF_IN66I/OConnect GSM antennaImpendence must be controlled to 50Ω.ANT_BT53I/OConnect GPS antennaImpendence must be controlled to 50Ω.GPS_RF_IN35IConnect GPS antennaImpendence must be controlled to 50Ω.RF synchronization1Connect GPS antennaImpendence must be controlled to 50Ω.	SIM interface					
NMCLK31OSIM clockwith a TVS diode array.SIM_RST32OSIM resetarray.SIM_PRESENCE33ISIM card detectionarray.AntennaImpendence must be controlled to 50Ω.Impendence must be controlled to 50Ω.ANT_BT53I/OConnect GSM antennaImpendence must be controlled to 50Ω.GPS_RF_IN35IConnect GPS antennaImpendence must be controlled to 50Ω.RF synchronizationIConnect GPS antennaImpendence must be controlled to 50Ω.	SIM_VDD	29	0		U	
SIM_CLKS1OSIM clockarray.SIM_RST32OSIM resetarray.SIM_PRESENCE33ISIM card detectionarray.AntennaGSM_RF_IN66I/OConnect GSM antennaImpendence must be controlled to 50Q.ANT_BT53I/OConnect Bluetooth antennaImpendence must be controlled to 50Q.GPS_RF_IN35IConnect GPS antennaImpendence must be controlled to 50Q.RF synchronizationIConnect GPS antennaImpendence must be controlled to 50Q.	SIM_DATA	30	I/O	SIM data input/output	protected against ESD	
SIM_RS132OSIM resetISIM_PRESENCE33ISIM resetIAntennaGSM_RF_IN66I/OConnect GSM antennaImpendence must be controlled to 50Q.ANT_BT53I/OConnect Bluetooth antennaImpendence must be controlled to 50Q.GPS_RF_IN35IConnect GPS antennaImpendence must be controlled to 50Q.RF synchronizationIConnect GPS antennaImpendence must be controlled to 50Q.	SIM_CLK	31	0	SIM clock	with a TVS diode	
AntennaGSM_RF_IN66I/OConnect GSM antennaImpendence must be controlled to 50Ω.ANT_BT53I/OConnect Bluetooth antennaImpendence must be controlled to 50Ω.GPS_RF_IN35IConnect GPS antennaImpendence must be controlled to 50Ω.RF synchronizationFFF	SIM_RST	32	0	SIM reset	array.	
GSM_RF_IN66I/OConnect GSM antennaImpendence must be controlled to 50Ω.ANT_BT53I/OConnect Bluetooth antennaImpendence must be controlled to 50Ω.GPS_RF_IN35IConnect GPS antennaImpendence must be controlled to 50Ω. RF synchronization	SIM_PRESENCE	33	Ι	SIM card detection		
GSM_RF_IN66I/OConnect GSM antennaControlled to 50Ω.ANT_BT53I/OConnect Bluetooth antennaImpendence must be controlled to 50Ω.GPS_RF_IN35IConnect GPS antennaImpendence must be controlled to 50Ω.RF synchronizationFFF	Antenna					
ANI_BT 53 I/O Connect Bluetooth antenna Controlled to 50Ω. GPS_RF_IN 35 I Connect GPS antenna Impendence must be controlled to 50Ω. RF synchronization I Connect GPS antenna Impendence must be controlled to 50Ω.	GSM_RF_IN	66	I/O	Connect GSM antenna	1	
GPS_RF_IN 35 1 Connect GPS antenna controlled to 50Ω. RF synchronization	ANT_BT	53	I/O	Connect Bluetooth antenna	•	
•	GPS_RF_IN	35	Ι	Connect GPS antenna	-	
RF_SYNC 63 O RF burst synchronous signal Do not pull up	RF synchronizatio	n				
	RF_SYNC	63	0	RF burst synchronous signal	Do not pull up	

Other signal						
RESET	16	Ι	Reset input(Active low)			
1PPS	37	Ι	Time Mark outputs timing pulse related to receiver time	If unused, keep open.		

3.3 Package Dimensions

4 GSM Application Interface

4.1 Power Supply

The power supply range of SIM808 is from 3.4V to 4.4V.Recommended voltage is 4.0V.The transmitting burst will cause voltage drop and the power supply must be able to provide sufficient current up to 2A. For the VBAT input, a bypass capacitor (low ESR) such as a 100 μ F is strongly recommended.

Increase the 33PF and 10PF capacitors can effectively eliminate the high frequency interference. A 5.1V/500mW Zener diode is strongly recommended, the diode can prevent chip from damaging by the voltage surge. These capacitors and Zener diode should be placed as close as possible to SIM808 VBAT pins.

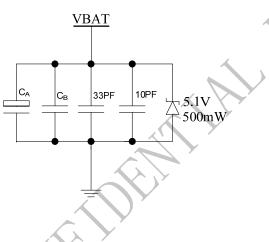


Figure 5: Reference circuit of the VBAT input

	Vendor	Part number	Power(watts)	Packages
1	On semi	MMSZ5231BT1G	500mW	SOD123
2	Prisemi	PZ3D4V2H	500mW	SOD323
3	Prisemi	PZ5D4V2H	500mW	SOD523
4	Vishay	MMSZ4689-V	500mW	SOD123
5	Crownpo	CDZ55C5V1SM	500mW	0805

Table 6: Recommended Zener diode

The following figure is the reference design of +5V input power supply. The designed output for the power supply is 4.1V, thus a linear regulator can be used.

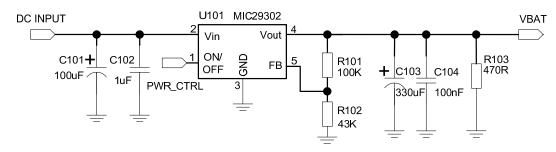


Figure 6: Reference circuit of the LDO power supply

If there is a high drop-out between the input and the desired output (VBAT), a DC-DC power supply will be preferable because of its better efficiency especially with the 2A peak current in burst mode of the module. The following figure is the reference circuit.

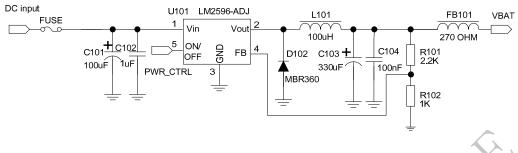
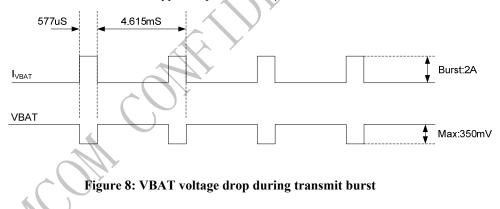


Figure 7: Reference circuit of the DC-DC power supply


The single 3.7V Li-ion cell battery can be connected to SIM808 VBAT pins directly. But the Ni-Cd or Ni-MH battery must be used carefully, since their maximum voltage can rise over the absolute maximum voltage of the module and damage it.

Notes: The module do not support for charging Ni-Cd or Ni-MH battery.

When battery is used, the total impedance between battery and VBAT pins should be less than $150m\Omega$. The following figure shows the VBAT voltage drop at the maximum power transmit phase, and the test condition is as following:

VBAT=4.0V,

A VBAT bypass capacitor $C_A=100\mu$ F tantalum capacitor (ESR=0.7 Ω), Another VBAT bypass capacitor $C_B=1\mu$ F.

4.1.1 Power Supply Pin

The 3 VBAT pins are used for power input, and pin 4, 5, 6 should be connected to the power GND. VRTC pin is power supply of the RTC circuit in the module. VDD_EXT will output 2.8V when module powered up.

When designing the power supply in user's application, pay special attention to power losses. Ensure that the input voltage never drop below 3.0V even when current consumption rises to 2A in the transmit burst. If the power voltage drops below 3.0V, the module may be shut down automatically. The PCB traces from the VBAT pins to the power supply must be wide enough (at least 60mil) to decrease voltage drops in the transmit burst. The power IC and the bypass capacitor should be placed to the module as close as possible.

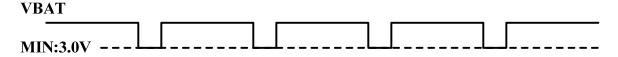


Figure 9: The minimal VBAT voltage requirement at VBAT drop

4.1.2 Monitoring Power Supply

The AT command "AT+CBC" can be used to monitor the VBAT voltage. For detail, please refer to document [1].

4.2 Power on/down SIM808

4.2.1 Power on SIM808

4.2.1.1 Turn on SIM808 Using the PWRKEY Pin (Power on)

User can power on SIM808 by pulling down the PWRKEY pin for at least 1 second and release. This pin is already pulled up to VBAT in the module internal, so external pull up is not necessary. Reference circuit is shown as below.

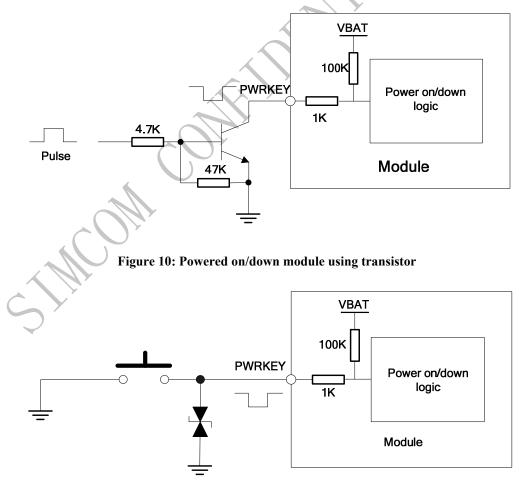
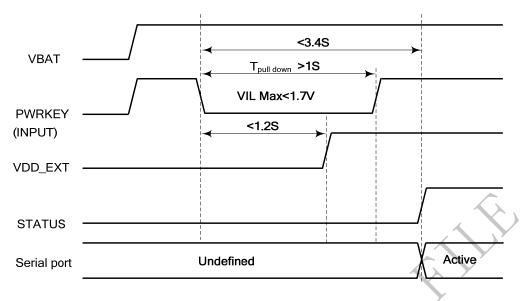
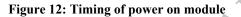




Figure 11: Powered on/down module using button

The power on scenarios is illustrated as following figure.

When power on procedure is completed, SIM808 will send following URC to indicate that the module is ready to operate at fixed baud rate.

RDY

This URC does not appear when autobauding function is active.

Note: User can use AT command "AT+IPR=x" to set a fixed baud rate and save the configuration to non-volatile flash memory. After the configuration is saved as fixed baud rate, the Code "RDY" should be received from the serial port every time when SIM808 is powered on. For details, please refer to the chapter "AT+IPR" in document [1].

4.2.1.2 Turn on the SIM808 using the VBUS Signal

The SIM808 will be automatically turned on when a charger is connected to VBUS pin, the switched-off SIM808 of which VBAT pin voltage is greater than 3.4V. SIM808 will power up.

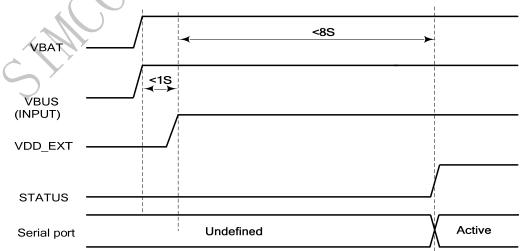


Figure 13: Timing of power on module

4.2.2 Power down SIM808

SIM808 will be powered down in the following situations:

- Normal power down procedure: power down SIM808 by the PWRKEY pin.
- Normal power down procedure: power down SIM808 by AT command "AT+CPOWD=1".
- Abnormal power down: over-voltage or under-voltage automatic power down.
- Abnormal power down: over-temperature or under-temperature automatic power down.

NOTE: The VBUS pin should not be charged, otherwise, the module will not be powered down.

4.2.2.1 Power down SIM808 by the PWRKEY Pin

User can power down SIM808 by pulling down the PWRKEY pin for at least 1 second and release. Please refer to the power on circuit. The power down scenario is illustrated in following figure.

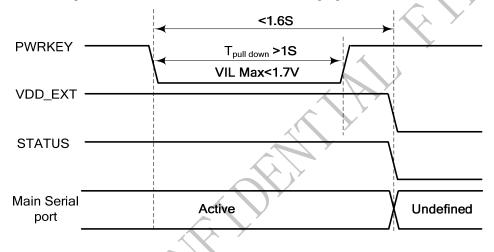


Figure 14: Timing of power down SIM808 by PWRKEY

This procedure makes the module log off from the network and allows the software to enter into a secure state to save data before completely shut down.

Before the completion of the power down procedure, the module will send URC:

NORMAL POWER DOWN

At this moment, AT commands can not be executed any more, and only the RTC is still active. Power down mode can also be indicated by STATUS pin, which is at low level at this time.

4.2.2.2 Power down SIM808 by AT Command

SIM808 can be powered down by AT command "AT+CPOWD=1". This procedure makes the module log off from the network and allows the software to enter into a secure state to save data before completely shut down.

Before the completion of the power down procedure, the module will send URC:

NORMAL POWER DOWN

At this moment, AT commands can not be executed any more, and only the RTC is still active. Power down mode can also be indicated by STATUS pin, which is at low level at this time.

For detail about the AT command "AT+CPOWD", please refer to document [1]

4.2.2.3 Over-voltage or Under-voltage Power down

The module software monitors the VBAT voltage constantly.

If the voltage \leq 3.5V, the following URC will be reported:

UNDER-VOLTAGE WARNNING

If the voltage \geq 4.3V, the following URC will be reported:

OVER-VOLTAGE WARNNING

If the voltage < 3.4V, the following URC will be reported, and the module will be automatically powered down. UNDER-VOLTAGE POWER DOWN

If the voltage > 4.4V, the following URC will be reported, and the module will be automatically powered down.

OVER-VOLTAGE POWER DOWN

At this moment, AT commands can not be executed any more, and only the RTC is still active. Power down mode can also be indicated by STATUS pin, which is at low level at this time.

4.2.2.4 Over-temperature or Under-temperature Power down

The module will constantly monitor the temperature of the module,

If the temperature $> +80^{\circ}$ C, the following URC will be reported:

+CMTE: 1

If the temperature $< -30^{\circ}$ C, the following URC will be reported:

+*CMTE:-1*

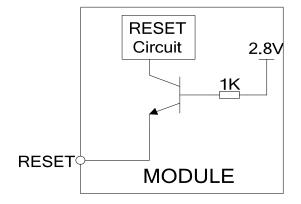
If the temperature > +85 °C, the following URC will be reported, and the module will be automatically powered down.

+CMTE: 2

If the temperature $< -40^{\circ}$ C, the following URC will be reported, and the module will be automatically powered down.

+*CMTE:-2*

At this moment, AT commands can not be executed any more, and only the RTC is still active. Power down mode can also be indicated by STATUS pin, which is at low level at this time.


The AT command."AT+CMTE" could be used to read the temperature when the module is running. For details please refer to *document* [1].

4.2.3 Reset Function

SIM808 also has a RESET pin (pin 16) used to reset the module. This function is used as an emergency reset only when AT command "AT+CPOWD=1" and the POWER_ON pin has no effect. User can pull the RESET pin to ground, then the module will reset.

This pin is already isolated in the module, so the external isolation is not necessary. Following figure is internal circuit of the RESET pin.

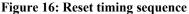

The typical value of RESET pin high level is 2.8V, so for the 3V or 3.3V, customer could use MCU's GPIO to driver this pin directly, resistor in serial the RESET signal could enhance the ESD performance but the value should not be too high, otherwise the level of RESET could be lower than threshold value; RESET hardware parameters can refer to the following table.

Table 7: Electronic characteristic of the RESET Pin

Pin name	Symbol	Min	Тур	Max	Unit	
	V _{IH}	2.7	2.8	2.9	V	
RESET	V_{IL}	-	-	0.6	V	
	T _{pull down}	105		-	mS	

RESET V_{IL}Max<0.6V VDD_EXT STATUS STATUS

The reset scenarios are illustrated in the following figures.

4.3 **Power Saving Mode**

User can control SIM808 module to enter or exit the sleep mode (AT+CSCLK=1) by DTR signal. When DTR is in high level and without interrupt (on air and hardware such as GPIO interrupt or data in serial port), SIM808 will enter sleep mode automatically. In this mode, SIM808 can still receive paging or SMS from network but the serial port is not accessible.

Note: Customer must shut off the power supply of GPS, and then the AT commands about the power saving mode can be executed correctly, and the current consumption will be lower.

4.3.1 Function Mode

There are three functionality modes, which could be set by the AT command "AT+CFUN=<fun>". The command provides the choice of the functionality levels <fun>=0, 1, 4.

- AT+CFUN=0: minimum functionality.
- AT+CFUN=1: full functionality (default).
- AT+CFUN=4: flight mode (disable RF function).

Table 8: The current consumption of function modes (BS-PA-MFRMS=5)

<fun></fun>	Current consumption(uA) (CSCLK=1)
0	869.5
1	1400
4	922.5

Minimum functionality mode minimizes the current consumption to the lowest level. If SIM808 is set to minimum functionality by "AT+CFUN=0", the RF function and SIM card function will be disabled. In this case, the serial port is still accessible, but all AT commands correlative with RF function and SIM card function will not be accessible.

For detailed information about the AT Command "AT+CFUN=<fun>", please refer to document [1].

4.3.2 Sleep Mode (AT+CSCLK=1)

When the GPS function is shut off, user can control SIM808 module to enter or exit the sleep mode (AT+CSCLK=1) by DTR signal. When DTR is in high level and without interrupt (on air and hardware such as GPIO interrupt or data in serial port), SIM808 will enter sleep mode automatically. In this mode, SIM808 can still receive paging or SMS from network but the serial port is not accessible.

Note: For SIM808, it requests to set AT command "AT+CSCLK=1" and ensure DTR at high level to enable the sleep mode ; the default value is 0, which can not make the module to enter sleep mode. For more details please refer to document [1].

4.3.3 Wake Up SIM808 from Sleep Mode (AT+CSCLK=1)

When SIM808 is in sleep mode (AT+CSCLK=1), the following methods can wake up the module:

- Pull down DTR pin.
 - The serial port will be active after DTR pin is pulled to low level for about 50ms.
- Receive a voice or data call from network.
- Receive a SMS from network.
- Receive external interrupt
- Charge VBUS pin

SIMCom A company of SIM Tech

4.4 Charging Interface

SIM808 has integrated a charging circuit inside the module for Li-Ion batteries charging control, which make it very convenient for user's applications that support battery charging. A common connection is shown in the following figure:

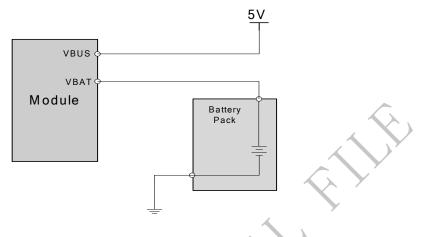


Figure 17: SIM808 with battery charger and pack connection

4.4.1 Battery Pack Characteristics

SIM808 has optimized the charging algorithm for the Li-Ion battery that meets the characteristics listed below.

- The maximum charging voltage of the Li-Ion battery pack is 4.2V and the recommended capacity is 1100mAh. The Battery packs with more than 1100 mAh capacity will take more time for charging.
- The battery pack should have a protection circuit to avoid overcharging, deep discharging and over-current, and the circuit should be insensitive to pulsed current.
- The internal resistance of the battery pack including protection circuit should be as low as possible. Its recommended value does not exceed $150m\Omega$.
- The battery pack must be protected from reverse pole connection.

On the SIM808, the build-in circuit of the power management chipset monitors the supply voltage constantly. Once the Under-voltage is detected, the SIM808 will be powered down automatically.

4.4.2 Recommended Battery Pack

Following is the specification of recommended battery pack:

Items	Description
Battery type	Li-ion
Manufacturer	Jiade Energy Technology
Normal voltage	3.7V
Capacity	NORMAL 1100mAh
Charge Voltage	4.200±0.050V

Table 9: Specification of recommended battery pack

Max Charge Current	1.0C
Charge Method	CC / CV (Constant Current / Constant Voltage)
Max Discharge Current	1.0C (for continuous discharging mode)
Discharge Cut-off Voltage	3.0V/ cell
Internal resistance	Initial≤150mΩ

4.4.3 Implemented Charging Technique

SIM808 has battery charging function, but default function is not support for charging, the customer should input AT command to enable charging function. There are two pins related to the battery charging function: there are VBUS, VBAT and pins. The VBUS Pin is driven by an external voltage (AC adapter or USB host), system can use this Pin to detect a charger supply and provide most charging current through SIM808 module to battery when charging is in fast charge state. VBAT pin gives charging current to external battery from SIM808 module.

It is very simple to implement charging function, user just needs to connect the charger to the VBUS Pin and connect the battery to the VBAT Pin.

SIM808 battery charging happens after detecting charger supply and the presence of battery. If there is no charger supply or no battery present, charging function will not be enabled.

Normally, there are three states in the whole charging procedure.

- DDLO charge (Pull-up mode) and UVLO charge (Pre-charge mode);
- Constant current mode (CC);
- Constant voltage mode and over-voltage protection(OV)

DDLO charge and UVLO charge:

DDLO is the state of battery when its voltage is under 2.2V. And UVLO means the battery voltage is less than 3.3V and more than 2.2V. The battery is not suitable for fast charging when its condition is DDLO or UVLO. The SIM808 provides a small constant current to the battery when the battery is between DDLO and UVLO. In DDLO charging state, SIM808 gives out pulse 70mA current to the battery. And in UVLO charging state, SIM808 provides about 200mA (AC<7V) or 70mA (USB mode) current to the battery.

DDLO charging terminates when the battery voltage reaches 2.2V. UVLO charging terminates when the battery voltage is up to 3.4V. Both DDLO and UVLO charge are controlled by the SIM808 hardware only.

Constant current mode (CC):

As the battery voltage is charged up and over3.4V, the SIM808 will enter CC mode. The CC mode charging current can be set from 70 to 800mA by the software.

Constant voltage mode (CV) and over-voltage protection (OV):

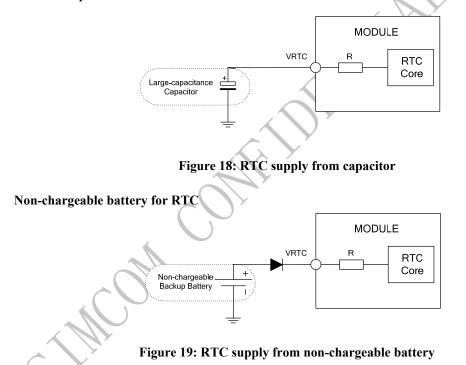
As the battery is charged up and over 4.05V, the SIM808 will enter CV mode. While the batter voltage actually reaches 4.2V, the charging current is gradually decreased step by step until stop charging.

4.4.4 Operating Modes during Charging

The battery can be charged during various operating mode. That means that charging can be in progress while SIM808 is in Normal mode (SLEEP, IDLE, TALK, GPRS IDLE or GPRS DATA mode). In this case the voltage supply should be sufficient. Here Charging in Normal mode is named as Charge mode.

If the charger is connected to the module's VBUS Pin and the valid battery is connected to the VBAT Pin while SIM808 is in POWER DOWN mode, SIM808 will auto power up. SIM808_Hardware Design_V1.00 29 2014.03.27

4.4.5 Charger Requirements


Following is the requirements of charger for SIM808:

- Simple transformer power plug
- Output voltage: 5.0V~7V
- Minimum supply current: 800mA
- A 10V peak voltage is allowed for maximum 1ms when charging current is switched off.
- A 1.6A peak current is allowed for maximum 1ms when charging current is switched on.

4.5 RTC Backup

Current input for RTC when the VBAT is not supplied for the system. Current output for backup battery when the VBAT power supply is in present and the backup battery is in low voltage state. The RTC power supply of module can be provided by an external capacitor or a battery (non-chargeable or rechargeable) through the VRTC. The following figures show various reference circuits for RTC back up.

• Rechargeable battery for RTC

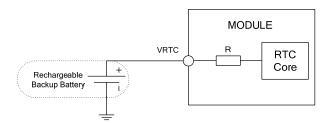


Figure 20: RTC supply from rechargeable battery

Coin-type rechargeable battery is recommended, such as XH414H-IV01E from Seiko can be used.

Typical charge-discharge curves for this battery are shown in the following figure.

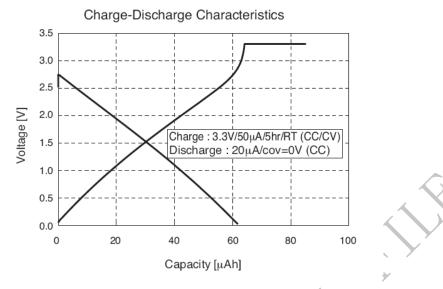


Figure 21: Seiko XH414H-IV01E charge-discharge characteristic

4.6 Serial Port and USB Interface

SIM808 provides one unbalanced asynchronous serial port. The module is designed as a DCE (Data Communication Equipment). The following figure shows the connection between module and client (DTE). **Table 10: Serial port and USB pin definition**

	Name	Pin number	Function
	DTR	9	Data terminal ready
	RI	10	Ring indicator
	DCD	11	Data carrier detect
Serial port	CTS	12	Clear to send
	RTS	13	Request to send
	TXD	14	Transmit data
	RXD	15	Receive data
LICD	VBUS	25	USB power supply
USB interface	USB_DP	26	USB data line plus
meridee	USB_DM	27	USB data line minus

Note: Hardware flow control is disabled by default. The AT command "AT+IFC=2,2" can enable hardware flow control. The AT command "AT+IFC=0,0" can disable hardware flow control. For more details, please refer to document [1].

Symbol	Min	Max	Unit
V _{IL}	0	0.3	V
V _{IH}	2.5	2.8	V
V _{OL}	0	0.1	V
V _{OH}	2.7	2.8	V

Table 11: Serial port characteristics

4.6.1 Function of Serial Port

Serial port:

- Full modem device.
- Contains data lines TXD and RXD, hardware flow control lines RTS and CTS, status lines DTR, DCD and RI.
- Serial port can be used for CSD FAX, GPRS service and AT communication...
- Serial port supports the following baud rates:
 1200, 2400, 4800, 9600, 19200, 38400, 57600 and 115200bps
- Autobauding only supports the following baud rates: 1200, 2400, 4800, 9600, 19200, 38400, 57600 and 115200bps
- The default setting is autobauding.

Autobauding allows SIM808 to automatically detect the baud rate of the host device. Pay more attention to the following requirements:

• Synchronization between DTE and DCE:

When DCE powers on with autobauding enabled, firstly, user must send character "A" or "a" to synchronize the baud rate. It is recommended to send "AT" until DTE receives the "OK" response, which means DTE and DCE are correctly synchronized. For more information please refer to the AT command "AT+IPR".

• Restrictions of autobauding operation:

The DTE serial port must be set at 8 data bits, no parity and 1 stop bit.

The URC such as "RDY", "+CFUN: 1" and "+CPIN: READY" will not be reported.

Note: User can use AT command "AT+IPR=x" to set a fixed band rate and the setting will be saved to non-volatile flash memory automatically. After the configuration is set as fixed band rate, the URC such as "RDY", "+CFUN: 1" and "+CPIN: READY" will be reported when SIM808 is powered on.

4.6.2 Serial Port

The following figure shows the connection between module and client (DTE).

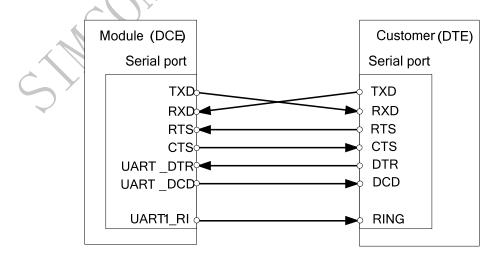


Figure 22: Connection of the serial port

If the voltage of UART is 3.3V, the following reference circuits are recommended. If the voltage is 3.0V, pleaseSIM808_Hardware Design_V1.00322014.03.27

change the resistors in the following figure from 5.6K to 14K.

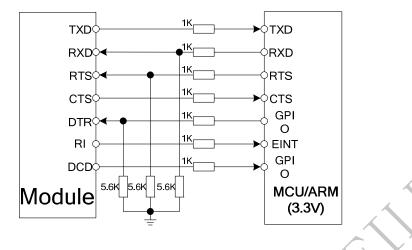


Figure 23: Level converting by resistor

If the voltage of UART is 3V or 3.3V, user also can use following reference circuits:

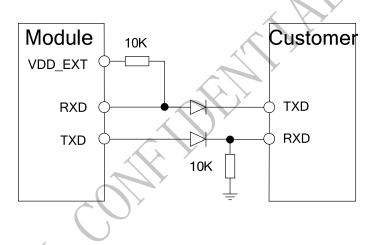


Figure 24: Isolation circuit by diodes

Note: when a diode used to isolate voltage cross, customer should notice that there's voltage drop on the diode. And the signal's voltage level should meet the customer's electrical character. The recommend diode is Schottky diode e.g. RB551V-30TE-17 and SDM20U40.

If the voltage of UART is 5V on customer side, customer can use the following reference circuits :

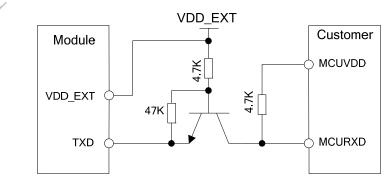
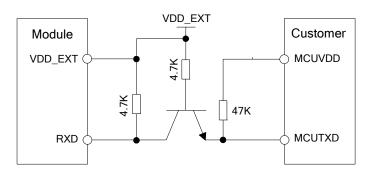
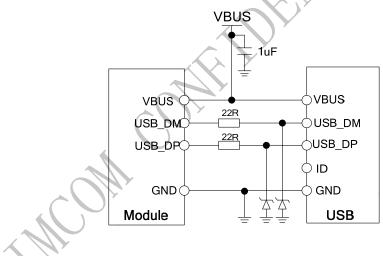



Figure 25: TX level converting by transistor


Figure 26: RX level converting by transistor

Note: The recommend Transistors' part numbers are 2SC4617TLR and PBHV8115Z. when update firmware via the TXD/RXD circuit as figure 25 and figure 26 shows, customer should make sure the VDD_EXT has voltage output, or a external LDO should be added to power VDD_EXT.

4.6.3 USB Interface

USB interface supports software debug function. When power on the module, connect VBUS, USB_DP, USB_DM and GND to PC, then install the driver successfully, a UART port could be recognized by the PC, customer could achieve the software Debug purpose with this UART port.

The following diagram is recommended:

Figure 27: USB reference circuit

The maximum allowable cap load of TVS on USB data line should be less than 5pF (e.g. ESD9L5.0ST5G and ESD9M5.0ST5G). The USB_DP and USB_DM should be routed in differential traces. *Note: please reserve the USB interface or test point for debug.*

Pin	Min	Тур	Max	Unit
VBUS	4.3	5	7	V

4.6.4 Software Upgrade and Debug

Only USB and interface can be used for firmware upgrade.

If customer upgrading firmware via the USB port, SIM808 must be powered first, then connect VBUS, USB_DP, USB_DM and GND to PC. There is no need to operate PWRKEY pin in the whole procedure, when SIM808 detects VBUS and could communicate normally by USB_DP and USB_DM, module will enter USB download mode automatically.

Note: When only USB_DP and USB_DM connected, no VBUS, customer need to pull down COL0 before power on the module, then press the PWRKEY button, the module will enter download mode;

The serial port and the debug port support the CMOS level. If user connects the module to the computer, the level shifter should be added between the DCE and DTE.

For details about software upgrading, please refer to document [4].

4.7 RI Behaviors

Table 13: RI Behaviors

State	RI response
Standby	High
Voice call	The pin is changed to low. When any of the following events occur, the pin will be changed to high: (1)Establish the call (2)Hang up the call
Data call	The pin is changed to low. When any of the following events occur, the pin will be changed to high: (1)Establish the call (2)Hang up the call
SMS	The pin is changed to low, and kept low for 120ms when a SMS is received. Then it is changed to high.
URC	The pin is changed to low, and kept low for 120ms when some URCs are reported. Then it is changed to high. For more details, please refer to <i>document [10]</i> .

The behavior of the RI pin is shown in the following figure when the module is used as a receiver.

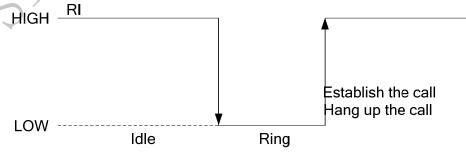
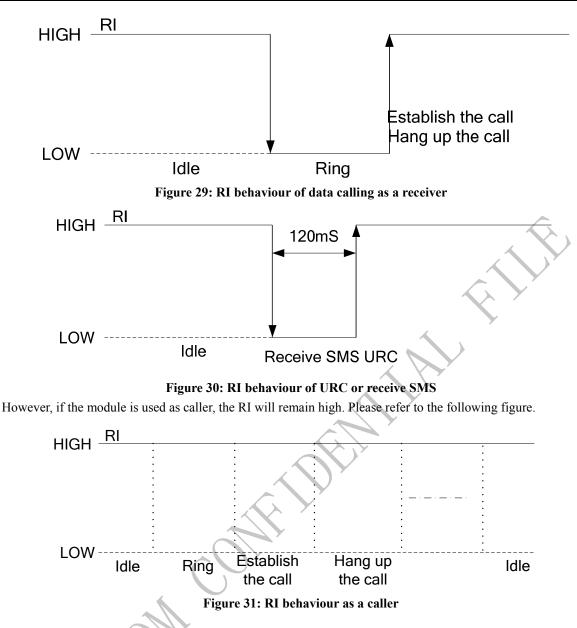



Figure 28: RI behaviour of voice calling as a receiver

4.8 **Audio Interfaces**

SIM808 provides one analog input, which could be used for electret microphone. The module also provides one analog output. The output can directly drive 32Ω receiver.

	Pin name	Pin number	Function
	MIC1P	19	Main Audio input positive
Audio	MIC1N	20	Main Audio input negative
channel	SPK1P	21	Main Audio output positive
	SPK1N	22	Main Audio output negative

Table 14: Audio interface definition

"AT+CMIC" is used to adjust the input gain level of microphone. "AT+SIDET" is used to set the side-tone level. In addition, "AT+CLVL" is used to adjust the output gain level. For more details, please refer to document [1] SIM808_Hardware Design_V1.00 36 2014.03.27

SIM Com A company of SIM Tech

In order to improve audio performance, the following reference circuits are recommended. The audio signals have to be layout according to differential signal layout rules as shown in following figures.

4.8.1 Speaker Interface Configuration

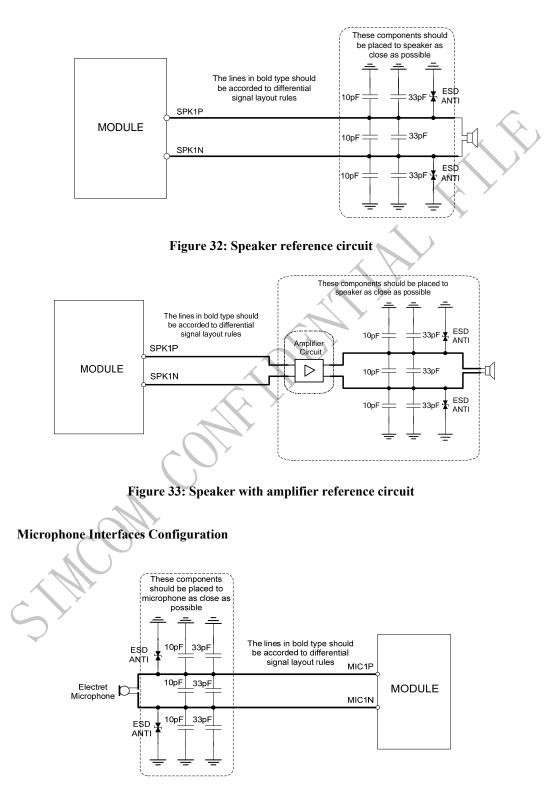


Figure 34 : Microphone reference circuit

4.8.2

4.8.3 Audio Electronic Characteristics

Table 15: Microphone input characteristics

Parameter		Min	Тур	Max	Unit
Mic biasing voltage			1.9	2.2	V
Working Current				2	mA
Input impedance(differential)		13	20	27	ΚΩ
Idle channel noise				-67	dBm
SINAD	Input level:-40dBm0	29			dB
	Input level:0dBm0		69		dB
					\mathbf{A}

Table 16: Audio output characteristics

parameter	Conditions	Min	Тур	Max	Unit
Normal output	$R_L=32 \Omega$ receiver	-	90	-	mW
				<i>v</i>	

4.8.4 TDD

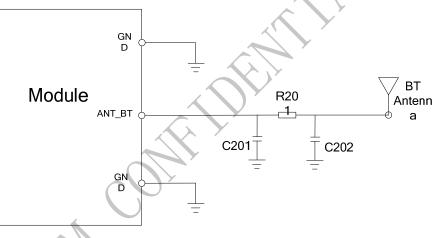
GSM signal could interfere audio by coupling or conducting. Coupling noise could be filtered by adding 33 pF and 10pF capacitor over audio lines.33pF capacitor could eliminate noise from GSM900MHz, while 10pF capacitor could eliminate noise from DCS1800MHz frequency. Coupling noise has great relatives with PCB layout. Under some scenarios, TDD noise from GSM 900MHz frequency affects heavily, but some different story is from GSM1800MHz fervency, so customer should develop this filter solution according to field test result.

GSM antenna is the key coupling interfering source of TDD noise. Pay attention to the layout of audio lines which should be far away from RF cable & antenna and VBAT pin. The bypass capacitor for filtering should be placed near module and another group placed near to connector.

Conducting noise is mainly caused by the VBAT drop. If Audio PA was powered by VBAT directly, then there will be some cheep noise from SPK output easily. So, it's better to put big capacitor and ferrite bead near audio PA input.

TDD noise has something to do with GND signal surely. If GND signal issued not good, lots of high-frequency noise will interfere MIC and speaker over bypass capacitor. So, take care of GND well during PCB layout.

4.9 Bluetooth


SIM808 supports Bluetooth function, customer only needs to design the Bluetooth antenna, and then customer can operate Bluetooth conveniently by AT commands. For the detail commands about Bluetooth please refer to *document [1]*

- Fully compliant with Bluetooth specification3.0 + EDR
- Support operation with GPS and GSM/GPRS worldwide radio systems
- Fully integrated PA provides 10dbm output power
- Up to 4 simultaneous active ACL links
- Support sniff mode

Support PCM interface and built-in programmable transcoders for liner voice with transmission.

4.9.1 Bluetooth Antenna Interface

The module provides a Bluetooth antenna interface named ANT_BT. External antenna must be matched properly to achieve best performance, so the matching circuit is necessary, the connection is recommended as the following figure:

Figure 35: Bluetooth antenna matching circuit

R201, C201, C202 are the matching circuit, the values depend on antenna debug result. Normally R201 is 0Ω , C201 and C202 are not mounted.

4.10 SIM Card Interface

The SIM interface complies with the GSM Phase 1 specification and the new GSM Phase 2+ specification for FAST 64 kbps SIM card. Both 1.8V and 3.0V SIM card are supported. The SIM interface is powered from an internal regulator in the module.

4.10.1 SIM Card Application

Table 17: SIM	[pin	definition
---------------	-------	------------

Name	Pin	function
SIM_VDD	29	Voltage supply for SIM card. Support 1.8V or 3V SIM card
SIM_DATA	30	SIM data input/output
SIM_CLK	31	SIM clock
SIM_RST	32	SIM reset
SIM_PRE	33	SIM card detection

It is recommended to use an ESD protection component such as ON (http://onsemi.com) SMF12CT1G. Note that the SIM peripheral circuit should be close to the SIM card socket. The reference circuit of the 8-pin SIM card holder is illustrated in the following figure.

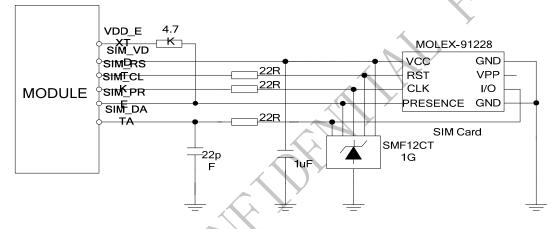


Figure 36: Reference circuit of the 8-pin SIM card holder

The SIM_PRESENCE pin is used for detection of the SIM card hot plug in. User can select the 8-pin SIM card holder to implement SIM card detection function. AT command "AT+CSDT" is used to enable or disable SIM card detection function. For details of this AT command, please refer to *document [1]*.

If the SIM card detection function is not used, user can keep the SIM_PRESENCE pin open. The reference circuit of 6-pin SIM card holder is illustrated in the following figure.

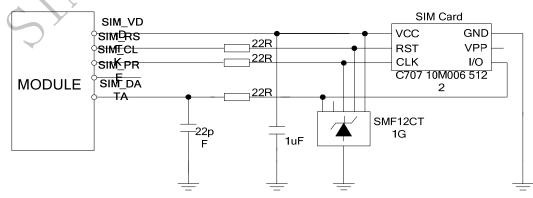


Figure 37: Reference circuit of the 6-pin SIM card holder

4.10.2 SIM Card Design Consideration

SIM card circuit is susceptible to interference, causing the SIM card failures or some other situations, so it is strongly recommended to follow these guidelines while designing:

- Make sure that SIM card holder should far away from GSM antenna while in PCB layout.
- SIM traces should keep away from RF lines, VBAT and high-speed signal lines.
- The traces should be as short as possible.
- Keep SIM holder's GND connect to main ground directly.
- Shielding the SIM card signal by ground well.
- Recommended to place a 1uF capacitor on VSIM line and keep close to the holder.

Add some TVS and the parasitic capacitance should not exceed 50pF, and 22Ω resistor in serials the SIM signal could enhance ESD protection.

4.10.3 Design Considerations for SIM Card Holder

For 8 pins SIM card holder, SIMCom recommends to use Molex 91228.User can visit <u>http://www.molex.com</u> for more information about the holder.

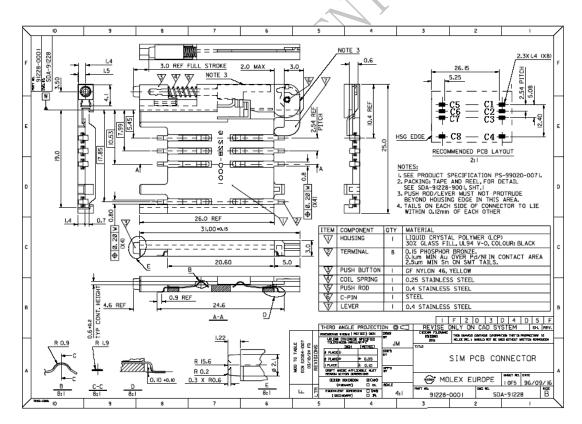
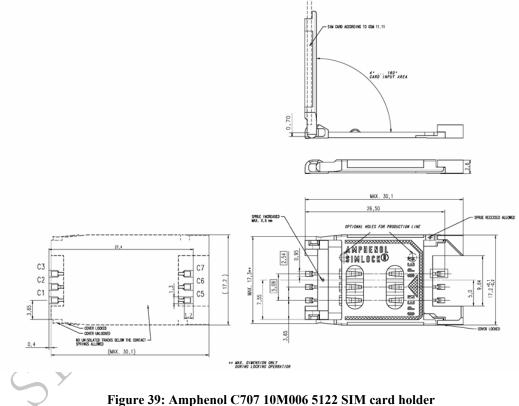



Figure 38: Molex 91228 SIM card holder

Pin name	Signal	Description
C1	SIM_VDD	SIM card power supply
C2	SIM_RST	SIM card reset
C3	SIM_CLK	SIM card clock
C3	GND	Connect to GND
C5	GND	Connect to GND
C6	VPP	Not connect
C7	SIM_DATA	SIM card data I/O
C8	SIM_PRE	Detect SIM card presence

Table 18: Pin description (Molex SIM card holder)

For 6-pin SIM card holder, SIMCom recommends to use Amphenol C707 10M006 5122 .User can visit <u>http://www.amphenol.com</u> for more information about the holder.

rigure 59: Am	pnenor C/0/	10W1000 5122	2 SIM card n

Pin name	Signal	Description
C1	VSIM	SIM card power supply
C2	SIM_RST	SIM card reset
C3	SIM_CLK	SIM card clock
C5	GND	Connect to GND
C6	VPP	Not connect
C7	SIM_DATA	SIM card data I/O

SIM808_Hardware Design_V1.00

4.11 PCM Interface

SIM808 provides PCM interface.

Table 20: PCM pin definition

Pin name	Pin number	Description
PCM_OUT	48	PCM data output
PCM_IN	47	PCM data input
PCM_SYNC	45	PCM synchrony
PCM_CLK	46	PCM clock

SIM808 PCM interface only supports master mode, data length is 16 bits (linear), and PCM clock rate is 256 KHz.

*

Table 21: PCM pin specification

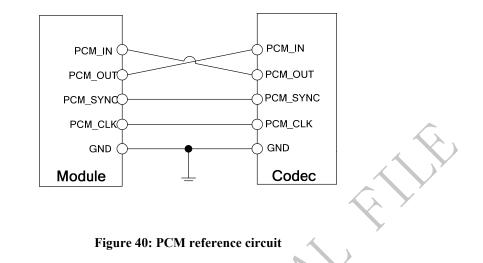
Feature	specification
Line Interface Format	Linear(Fixed)
Data length	16bits(Fixed)
PCM Clock/Sync Source	Master Mode(Fixed)
PCM Clock Rate	256Khz(Fixed)
PCM Sync Format	Short sync/Long sync both support
Zero Padding/Sign extensi	Default Zero Padding
on	
Data Ordering	MSB/LSB both support

Note: User can use AT command control PCM interface, for details please refer to document [1].

4.11.1 PCM Multiplex Function

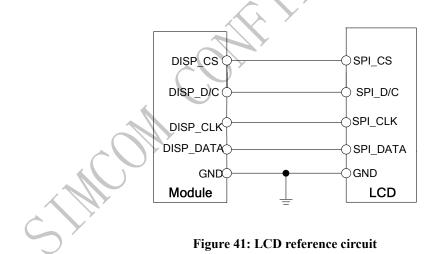
With GPIO5 and GPIO6, PCM interface can be configured as SPI or SD interface, the following table shows the detailed multiplex function.

Table	22:	PCM	Multi	plex	Function
1 4010		1 0111	I'I CILCI	prom.	1 unceion


Name	Pin number	Mode 0(default)	Mode 1	Mode 2	Mode 3
PCM_OUT	48	PCM_OUT	GPIO10	MC3DA3	/
PCM_IN	47	PCM_IN	DISP_DATA	MC3DA2	GPIO9
PCM_SYNC	45	PCM_SYNC	DISP_CS	MC3CK	GPIO7
PCM_CLK	46	PCM_CLK	GPIO8	MC3CM0	GPIO8
GPIO6	44	GPIO6	DISP_CLK	MC3DA1	/
GPIO5	43	GPIO5	DISP_D/C	MC3DA0	/

Note: Multiplex Function need different software version.

4.11.2 PCM Interface


Refer to the following figure for PCM design:

4.11.3 LCD Display/SPI Interface

SIM808 provides a serial interface. It could be used as SPI interface in the embedded AT application. For details about embedded AT application, please refer to *document* [1].

Refer to the following figure for SPI design:

Note: This function is not supported in the standard firmware. If user wants this function, the firmware must be customized. Please contact SIMCom for more details.

4.11.4 SD Card Interface

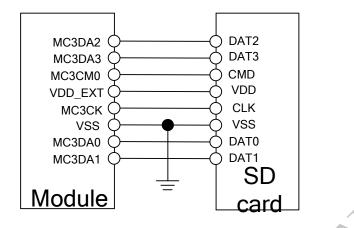


Figure 42: SD reference circuit

If the VDD of SD card is 2.8V, user can use VDD_EXT power the SD card directly. If the VDD is 3.3V, customer should design the power circuit external.

4.12 Keypad Interface

SIM808 consists of 4 keypad column outputs and 4 keypad row inputs, and it can support two kinds of connections, the traditional 4*4 keypad matrix and the extended 4*4*2 keypad matrix.

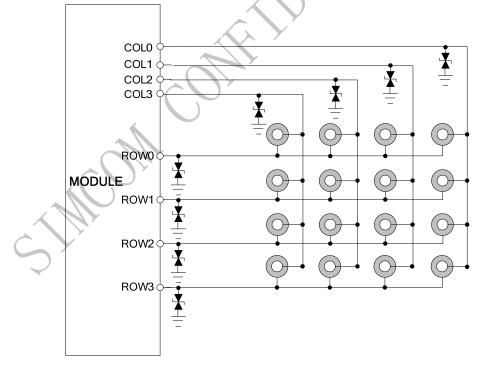


Figure 43: Traditional keypad reference circuit

Note: 1, According to the traditional 4*4 keypad matrix, when there are unused COLs or ROWs, user can execute AT command to define unused COLs and ROWs as GPIO, for details please see the document [1].

2. Press COL0 and ROW0 or pull down COL0 when power-on(PWRKEY, Charging, RTC alarm), power sequence is USB Download.

Module supports a new keypad connection, it can support 4*4*2 amount 32 keypads, meet full keyboard demand, and the connection diagram is as follow:

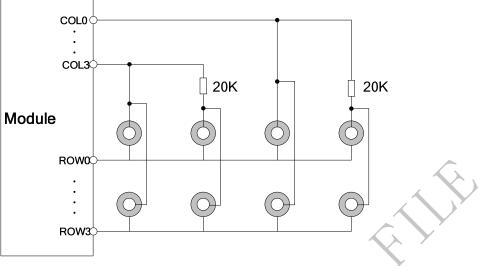
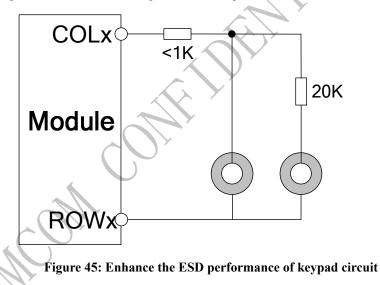
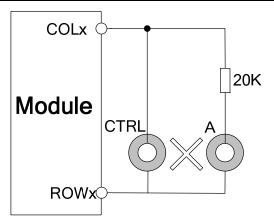
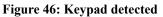



Figure 44: Extended keypad reference circuit


Note: Do not change the $20K\Omega$ resistor in the diagram.


Customer should add a resistor to enhance the ESD performance and the value of resistor should be less than $1K\Omega$, the connection diagram is shown in follow figure as an example.

Module can detect two buttons pressed synchronously at both the traditional and extended keypad connection, but customer should notice that, do not assign keys which will be pressed at the same time on same COL and ROW when implement the extended keypad design. The following figure is an example to explain this situation, "CTRL" and "A" can not be recognized if the two buttons were pressed at the same time.

Table 23: Pin definition of the keypad interface

Name	Pin	Function	Default state
COL0	62	-	Pull up
COL1	61		Pull down
COL2	60	Reypad matrix column	Pull down
COL3	59		Pull down
ROW0	58		Pull down
ROW1	57	Kaunad matrix row	Pull down
ROW2	56	Keypad matrix row	Pull down
ROW3	55		Pull down

Table 24: Keypad multiplex function

Pin name	Pin number	Mode 0(default)	Mode 1
COL0	62	COL0	GPIO18
COL1	61	COL1	GPIO17
COL2	60	COL2	GPIO16
COL3	59	COL3	GPIO15
ROW0	58	ROW0	GPIO14
ROW1	57	ROW1	GPIO13
ROW2	56	ROW2	GPIO12
ROW3	55	ROW3	GPIO11

Note: Multiplex Function need different software version.

4.13 I2C BUS

The SIM808 provides an I2C interface, it can be driven by either the master or slave and conform to the I2C specification. It has the following features:

• Compliant master mode operation

SIM808_Hardware Design_V1.00

- Adjustable clock speed for LS/FS mode operation
- Support 7-bit/10-bit addressing
- Support high speed mode
- Support slave clock extension
- START/STOP/REPEATED condition
- Manual transfer mode
- Multi-write per transfer (up to 8 data bytes for non-DMA mode)
- Multi-read per transfer (up to 8 data bytes for non-DMA mode)
- Multi-transfer per transaction
- Combined format transfer with length change capability

Active drive/write-and I/O configuration

Table 25: Pin definition of the I2C

Pin name	Pin number	Description
SCL	39	I2C serial bus clock
SDA	38	I2C serial bus data

Note: I2C has been pulled up to 2.8V via $4.7K\Omega$.

Table 26: I2C multiplex function

Pin name	Pin number	Mode 0(default)	Mode 1
SCL	39	SCL	GPIO2
SDA	38	SDA	GPIO1
SDA	38	SDA	

4.13.1 General Purpose Input/Output (GPIO)

SIM808 provides 2 GPIO pins. The output voltage level of the GPIO can be set by the AT command "AT+ SGPIO". The input voltage level of the GPIO can also be read by the AT command "AT+ SGPIO". For more details, please refer to *document [1]*.

Table 27: Pin definition of the GPIO

Pin name	Pin number	Reset state
GPIO6	44	Pull down
GPIO5	43	Pull down
	/	

4.14 ADC

Table 28: Pin definition of the ADC

Pin name	Pin number	Description
ADC1	23	Analog to Digital Converter
ADC2	24	Analog to Digital Converter

SIM808 provides two auxiliary ADC, which can be used to measure the voltage. User can use AT command

"AT+CADC" to read the voltage value. For details of this AT command, please refer to document [1].

Table 29: ADC specification

Parameter	Min	Тур	Max	Unit
Voltage range	0	-	2.8	V
ADC Resolution	-	10	-	bits
Sampling rate	-	-	1.0833	MHz
ADC precision		10	20	mV

Note: the voltage should less than 2.8V, or the ADC may be damaged.

4.15 PWM

Table 30: Pin definition of the PWM

Pin name	Pin number	Description
PWM1	42	PWM1, multiplex with GPIO4
PWM2	41	PWM2, multiplex with GPIO3

Note: SIM808 can only support 1 PWM synchronously, if customer set PIN 42 as PWM, so PIN41 can only be used as GPIO.

PWM output frequency varies from 0 to 2KHz.Two 7-bit unsigned binary parameters are used for the output period and for the duty cycle. The AT command "AT + SPWM" is used to set the output period and duty cycle of the PWM. For details, please refer to *document [1]*.

A typical circuit of the PWM drives buzzer is shown in the following figure:

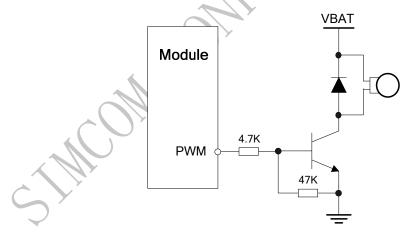


Figure 47: Reference circuit of PWM drive buzzer

Parameter	Min	Тур	Max	Unit
Working voltage	2.5	2.8	2.9	V
Working current			16	mA

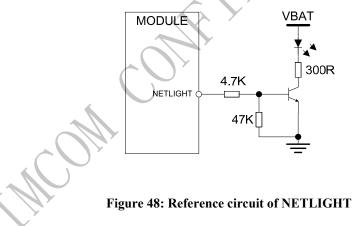
Note: PWM pin must keep low when module in the boot process.

Table 32: PWM multiplex function

Pin name	Pin number	Mode 0(default)	Mode 1
PWM1	42	PWM1	GPIO4
PWM2	41	GPIO3	PWM2

4.16 Network Status Indication

Table 33: Pin definition of the NETLIGHT


Pin name	Pin number	Description	
NETLIGHT	50	Network Status Indication	1

The NETLIGHT pin can be used to drive a network status indication LED. The status of this pin is listed in following table:

Table 34: Status of the NETLIGHT pin

Status	SIM808 behavior
Off	SIM808 is not running
64ms On/ 800ms Off	SIM808 not registered the network
64ms On/ 3000ms Off	SIM808 registered to the network
64ms On/ 300ms Off	PPP GPRS communication is established

A reference circuit is recommended in the following figure:

4.17 Operating Status Indication

The STATUS pin indicates the operating status of module. The pin output high when module power on, output is low when module powered off.

50

Table 35: Pin definition of the STATUS

Pin name	Pin number	Description
STATUS	49	Operating status indication

4.18 RF Synchronization Signal

The synchronization signal serves to indicate growing power consumption during the transmit burst.

Pin name	Pin number	Description
RF_SYNC	63	Transmit synchronization signal

Note: Do not pull up RF_SYNC.

The timing of the synchronization signal is shown in the following figure. High level of the RF_SYNC signal indicates increased power consumption during transmission.

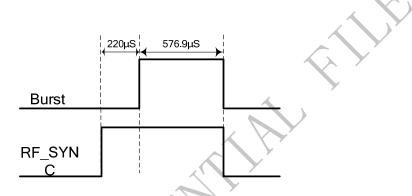


Figure 49: RF_SYNC signal during transmit burst

4.19 GSM antenna Interface

GSM antenna port is named RF_ANT. The impedance should be 50Ω . VSWR should be less than 2. It is recommended that GSM antenna and Bluetooth antenna be placed as far as better to keep the isolations more than 30dB.

The customer's GSM antenna also can be located in the customer's main board and connect to module's GSM_ANT pad through microstrip line or other type RF trace which impendence must be controlled in 50 Ω . To facilitate the antenna tuning and certification test, a RF connector and an antenna matching circuit should be added. The following figure is the recommended circuit.

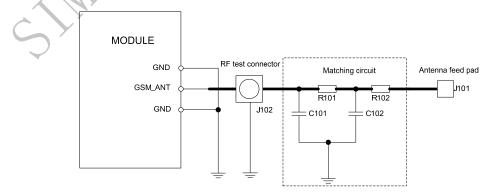


Figure 50: GSM antenna matching circuit

In this figure, the components R101,R102,C101 and C102 is used for antenna matching, the components' value SIM808_Hardware Design_V1.00 51 2014.03.27

only can be got after the antenna tuning. Usually, matching components' value is provided by antenna vendor, the default value of R101 and R102 are 0Ω , and reserve the place of C101 and C102 without soldering.

The RF test connector in Figure 50 is used for conducted RF performance test, and should be placed as close as possible to the module's RF_ANT pad. The traces in bold type should be treated as 50Ω impedance controlled line in PCB layout. For details about radio frequency trace layout, please refer to *document [9]*.

5 GPS Application Interface

SIM808 provide a high-performance L1 GPS solution for cellular handset applications. The solution offers best-in-class acquisition and tracking sensitivity, Time-To-First-Fix (TTFF) and accuracy. The GPS engine supports both fully-autonomous operations for use in handheld consumer navigation devices and other standalone navigation systems.

The module supports GPS, QZSS, SBAS ranging (WAAS, EGNOS, GAGAN, MSAS). The GPS NMEA information is output by serial port. The default baud rate is 115200bps.

The GPS engine is controlled by GSM engine, so when it is necessary to run GPS, the GSM engine must be powered on and not in SLEEP mode.

All the GPS function is controlled by AT command via serial port. The GPS functions of AT commands are listed in the following table.

Command	Description
AT+CGPSPWR	GPS power control
AT+CGPSRST	GPS mode reset (hot/warm/cold)
AT+CGPSSTATUS	Get current GPS status
AT+CGPSOUT	GPS NMEA data output control
AT+CGPSINF	Get current GPS location info
AT+CGPSIPR	Set GPS NMEA output UART bps

Table 37: AT Commands for GPS function

For details of these AT command, please refer to document [1].

5.1 GPS Operating Modes

GPS has two operating modes which can be controlled by AT command.

Active mode: GPS is active as a GPS receiver. The GPS engine will automatically acquire and track GPS satellites.

Power down mode: The GPS engine will be set into this mode by sending AT command "AT+CGPSPWR=0". In this mode the internal power supply for GPS will be shutdown, and the current consumption is very low. The last position, current time and ephemeris data will be stored in the GSM host memory.

5.2 GPS Power on/down Scenarios

5.2.1 Power on GPS engine

User can power on GPS engine by sending AT command "AT+CGPSPWR=1".

5.2.2 Power down GPS engine

User can power down GPS engine by sending AT command "AT+CGPSPWR=0".

5.3 GPS Antenna Interface

5.3.1 GPS Antenna Interface

The customer's GPS antenna also can be located in the customer's main board and connect to module's GPS ANT pad through microstrip line or other type RF trace which impendence must be 50Ω .

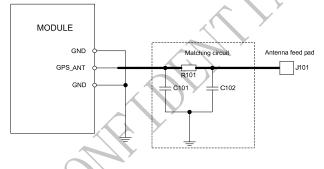


Figure 51: GPS antenna matching circuit

In Figure 51, the components R101, C101 and C102 is used for antenna matching, the components' value only can be got after the antenna tuning. Usually, matching components' value is provided by antenna vendor, the default value of R101 is 0Ω , and users need to reserve the place of C101 and C102 without soldering. The traces in bold type should be treated as 50Ω impedance controlled line in PCB layout.

5.3.2 GPS Antenna Choice Consideration

To obtain excellent GPS reception performance, a good antenna will always be required. The antenna is the most critical item for successful GPS reception in a weak signal environment. Proper choice and placement of the antenna will ensure that satellites at all elevations can be seen, and therefore, accurate fix measurements are obtained.

Most customers contract with antenna design houses to properly measure the radiation pattern of the final mounted configuration in a plastic housing with associated components near the antenna. Linear antennas are becoming more popular, and the gain is reasonable, since a smaller ground plane can be used.

User can consider following factors as:

- Choose a linear antenna with a reasonably uniform hemispherical gain pattern of >-4dBi.
- Use of an antenna with lower gain then this will give less than desirable results. Please note that a RHCP

antenna with a gain of 3dBi, equates to a linear polarized antenna of 0dBi.

SIM808 Hardware Design V1.00

- Proper ground plane sizing is a critical consideration for small GPS antennas.
- Proper placement of the GPS antenna should always be the FIRST consideration in integrating the SIM808 GPS Module.

If the customer's design will allow for a ceramic RHCP patch antenna with an appropriately sized ground plane, and the patch is normally oriented towards the sky, then that particular solution usually works the best. Note that if the patch antenna ground plane is less than 60x60mm, then compromises to the beam width and gain pattern could result. Usually the gain becomes very directional, and looses several dB of performance. Since results can vary, measuring the antenna radiation pattern in the final housing in an appropriate anechoic chamber is required.

Some customers do not have the size availability to implement a patch antenna approach. In that instance, use of a Linear Polarized (LP) antenna is the next best alternative. There are new ceramic LP antennas on the market that exhibit reasonable gain characteristics once properly mounted in the housing, and when matched to an appropriate sized ground. Generally the ground plane requirements are smaller for a LP antenna when compared to a patch, but once again, proper testing in an anechoic chamber is a mandatory requirement. These ceramic elements will need to be located near the end of the ground plane, and will require several millimeters of clearance between the closest component. It is important to note that use of a LP antenna will result in a minimum of 3dB of gain loss when compared to a RHCP antenna at a defined elevation. This is due to the right hand gain rule of antenna propagation.

Use of PIFA antenna is another LP possibility, but the PIFA usually exhibits a considerable amount of gain nulls, or "holes" in the radiation pattern. This will be undesirable for obtaining a low circular error probability (CEP), since the antenna may not allow the receiver to capture the desired satellite at the ideal orientation due to these noted gain nulls. Once again, careful testing in an appropriate anechoic chamber is required.

If the customer's design is for automotive applications, then an active antenna can be used and located on top of the car in order to achieve the best signal quality. GPS antenna choice should be based on the designing product and other conditions.

For detailed Antenna designing consideration, please refer to related antenna vendor's design recommendation. The antenna vendor will offer further technical support and tune their antenna characteristic to achieve successful GPS reception performance depending on the customer's design.

6 Electrical, Reliability and Radio Characteristics

6.1 Absolute Maximum Ratings

The absolute maximum ratings stated in following table are stress ratings under non-operating conditions. Stresses beyond any of these limits will cause permanent damage to SIM808.

Table 38: Absolute maximum ratings

Symbol	Min	Тур	Max	Unit

VBAT	-	-	4.5	V
Peak Current	0	-	2.0	А
VBUS	-	-	30	V
I _I *	-	-	8	mA
I ₀ *	-	-	8	mA

* These parameters are for digital interface pins, such as keypad, GPIO, I2C, UART, LCD and PCM..

Recommended Operating Conditions 6.2

Table 39: Recommended operating conditions

	Min	Тур	Max	Unit		
ltage	3.4	4.0	4.4	V		
rature	-40	+25	+85	°C		
ure	-45		+90	°C		
	rature	ltage 3.4 rature -40	Itage 3.4 4.0 rature -40 +25 ure -45 -45	Itage 3.4 4.0 4.4 rature -40 $+25$ $+85$		

Digital Interface Characteristics 6.3

C	I Interface Characteristics	~				
Symbol	Parameter	Min	Тур	Max	Unit	
I _{IH} I _{IL}	High-level input current Low-level input current	-10 -10	-	10 10	uA uA	
V _{IH}	High-level input voltage	2.4	-	-	V	
V _{IL} V _{OH}	Low-level input voltage High-level output voltage	- 2.7	-	0.4 -	V V	
V _{OL}	Low-level output voltage	-	-	0.1	V	

* These parameters are for digital interface pins, such as keypad, GPIO, I²C, UART, LCD, PWMs and DEBUG.

SIM Card Interface Characteristics 6.4

Table 41: SIM card interface characteristics

Symbol	Parameter	Min	Тур	Max	Unit
I _{IH}	High-level input current	-1	-	1	uA
I _{IL}	Low-level input current	-1	-	1	uA
V _{IH}	High-level input voltage	1.4	-	-	V
♥ IH		2.4	-	-	V
V _{IL}	Low-level input voltage	-	-	0.27	V
▼ IL				0.4	V
V _{OH}	High-level output voltage	1.62	-	-	V
		2.7	-	-	V

V	Low lovel output voltage	-	-	0.36	V
V OL	Low-level output voltage	_	-	0.4	V

6.5 SIM_VDD Characteristics

Table 42: SIM VDD characteristics

Symbol	Parameter	Min	Тур	Max	Unit
Vo	Output voltage	-	3	-	V
		-	1.80	-	
Io	Output voltage	-	-	10	mA

VDD_EXT Characteristics 6.6

Table 43: VDD EXT characteristics

_	EXT Characteristics			F S	
Symbol	Parameter	Min	Тур	Max	Unit
Vo	Output voltage	2.70	2.80	2.95	V
Io	Output current	-	-	50	mA

FILLE

6.7 VRTC Characteristics

Table 44: VRTC characteristics

Symbol	Parameter	Min	Тур	Max	Unit	
V _{RTC-IN}	VRTC input voltage	-	2.8	-	V	
I _{RTC-IN}	VRTC input current	-	3	-	uA	
V _{RTC-OUT}	VRTC output voltage	-	2.8	-	V	
I _{RTC-OUT}	VRTC output current	-		2	uA	

Current Consumption (VBAT = 4V, GPS engine is powered down) 6.8

Table 45: GSM current consumption*

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VBAT	Voltage		3.4	4.0	4.4	V
	Power drop	PCL=5			350	mV
	Voltage ripple	PCL=5				
		@ f<200kHz			50	mV
		@ f>200kHz			2	mV

I _{VBAT}	Average current	Power down mode	38	50	uA
		Sleep mode (AT+CFUN=1):			
		(BS-PA-MFRMS=9)	1.965		mA
		(BS-PA-MFRMS=5)	1.7		mA
		(BS-PA-MFRMS=2)	1.4		mA
		Idle mode (AT+CFUN=1):			
		EGSM900	22.1		mA
		Voice call (PCL=5):			
		GSM850	207.63		mA
		EGSM900	202.32		mA
		DCS1800	139.825		
		PCS1900	137.805		
		Data mode GPRS (1Rx,4Tx):			
		GSM850	445.82		mA
		EGSM900	424.32		mA
		DCS1800	293.62		
		PCS1900	279.18		
		Data mode GPRS (3Rx,2Tx):			
		GSM850	329.79		mA
		EGSM900	220.62		mA
		DCS1800	223.18		
		PCS1900	218.34		
		Data mode GPRS (4Rx,1Tx):			
		GSM850	221.25		mA
		EGSM900	220.62		mA
		DCS1800	158.01		
		PCS1900	158.62		
I _{MAX}	Peak current	During TX burst	2.0		А

* In above table the current consumption value is the typical one of the module tested in laboratory. In the mass production stage, there may be differences among each individual.

6.9 Electro-Static Discharge

SIM808 is an ESD sensitive component, so more attention should be paid to the procedure of handling and packaging. The ESD test results are shown in the following table.

Pin	Contact discharge	Air discharge
VBAT	±5KV	±10KV
GND	±5KV	±10KV
RXD, TXD	±4KV	±8KV
Antenna port	±5KV	±10KV

SIM Com		Smart Machine Smart Decision
SPK1P/ SPK1N	. 4775.7	

SPK1P/ SPK1N
MIC1P/ MIC1N±4KV±8KVPWRKEY±4KV±8KV

Note: It is suggested that customers in serials with 1000hm resistances on UART lines for ESD consideration.

6.10 Radio Characteristics

S A cor

6.10.1 Module RF Output Power

The following table shows the module conducted output power, it is followed by the 3GPP TS 05.05 technical specification requirement.

	GSM 900	0 and EGSM 850			
PCL	Nominal output power (dBm)	Tolerance (dB)	for conditions		
ICL	Nominal output power (ubm)	Normal	Extreme		
0-2	39	±2	±2.5		
3	37	±3	±4		
4	35	±3	±4		
5	33	±3	±4		
6	31	±3	±4		
7	29	±3	±4		
8	27	±3	±4		
9	25	±3	±4		
10	23	±3	±4		
11	21	±3	±4		
12	19	±3	±4		
13	17	±3	±4		
14	15	±3	±4		
15	13	±3	±4		
16	11	±5	±6		
17	9	±5	±6		
18	7	±5	±6		
19-31	5	±5	±6		

Table 47: SIM808 GSM 900 and GSM 850 conducted RF output power

Table 48: SIM808 DCS 1800 and PCS 1900 conducted RF output power

DCS 1800 and PCS 1900			
PCL	Nominal output power (dBm)	Tolerance (dB)	for conditions
ICL	Tommal output power (ubm)	Normal	Extreme

29	36	±2	±2.5
30	34	±3	±4
31	32	±3	±4
0	30	±3	±4
1	28	±3	±4
2	26	±3	± 4
3	24	±3	± 4
4	22	±3	±4
5	20	±3	±4
6	18	±3	±4
7	16	±3	±4
8	14	±3	±4
9	12	±4	±5
10	10	±4	±5
11	8	± 4	±5
12	6	± 4	±5
13	4	±4	±5
14	2	±5	±6
15-28	0	±5	±6

For the module's output power, the following should be noted:

At GSM900 and GSM850 band, the module is a class 4 device, so the module's output power should not exceed 33dBm, and at the maximum power level, the output power tolerance should not exceed $\pm/-2dB$ under normal condition and $\pm/-2.5dB$ under extreme condition.

At DCS1800 and PCS1900 band, the module is a class 1 device, so the module's output power should not exceed 30dBm, and at the maximum power level, the output power tolerance should not exceed \pm -2dB under normal condition and \pm -2.5dB under extreme condition.

6.10.2 Module RF Receive Sensitivity

The following table shows the module's conducted receive sensitivity, it is tested under static condition.

Frequency	Receive sensitivity (Typical)	Receive sensitivity(Max)
GSM850	-109dBm	-107dBm
EGSM900	-109dBm	-107dBm
DCS1800	-109dBm	-107dBm
PCS1900	-109dBm	-107dBm

Table 49: SIM808 conducted RF receive sensitivity

6.10.3 Module Operating Frequencies

The following table shows the module's operating frequency range; it is followed by the 3GPP TS 05.05 technical specification requirement.

Table 50: SIM808 operating frequencies

Frequency	Receive	Transmit
GSM850	869 ~ 894MHz	824 ~ 849 MHz
EGSM900	925 ~ 960MHz	880 ~ 915MHz
DCS1800	1805 ~ 1880MHz	1710 ~ 1785MHz
PCS1900	1930 ~ 1990MHz	1850 ~ 1910MHz
Stille	Contractions	

7 Manufacturing

7.1 Top and Bottom View of SIM808

Figure 52: Top and Bottom View of SIM808

7.2 Typical Solder Reflow Profile

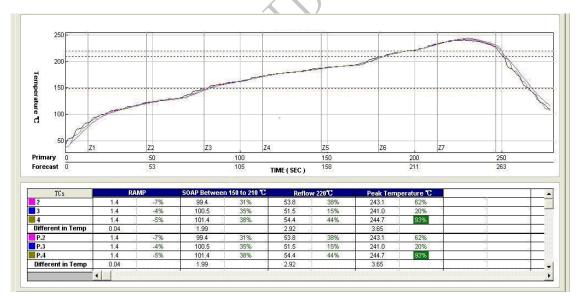


Figure 53: Typical Solder Reflow Profile

Note: Please refer to (Module secondary-SMT-UGD) for more information about the module shipping and manufacturing.

7.3 The Moisture Sensitivity Level

The moisture sensitivity level of SIM808 is 3. The module should be mounted within 168 hours after unpacking in the environmental conditions of temperature $<30^{\circ}$ C and relative humidity of <60% (RH). It is necessary to bake the module if the above conditions are not met:

Table 51: Moisture classification level and floor life

Level	Floor Life (out of bag) at factory ambient≤30°C /60% RH or as stated
1	Unlimited at ≤30°C /85% RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use. After bake, it must be reflowed within the time limit specified on the
	label.

NOTES:

1. If the vacuum package is not open for 6 months or longer than the packing date, baking is also recommended before re-flow soldering.

2. For product handling, storage, processing, IPC / JEDEC J-STD-033 must be followed.

7.4 Baking Requirements

Because of its sensitivity to moisture absorption, SIM808 should be baked sufficiently before re-flow soldering. Otherwise SIM808 will be at the risk of permanent damage during re-flow soldering. SIM808 should be baked 192 hours at temperature $40^{\circ}C + 5^{\circ}C$ /-0°C and <5% RH for low-temperature device containers, or 72 hours at temperature $80^{\circ}C\pm5^{\circ}C$ for high-temperature device containers. Care should be taken that the plastic tray is not heat resistant, SIM808 modules should be taken out for baking, and otherwise the tray may be damaged by high-temperature during baking.

Table 52: Baking requirements

Baking temperature	Moisture	Time
40°C±5°C	<5%	192 hours
120°C±5°C	<5%	4 hours

Appendix

A. Related Documents

Table 53: Related documents

SN	Document name	Remark
[1]	SIM800_AT Command Manual	SIM800 AT Command Manual
[2]	AN_SIM900_TCPIP	TCP/IP Applications User Manual
[3]	SIM900_Multiplexer User Manual_Application Note	SIM808 Multiplexer User Manual Application Note
[4]	AN_SIM900 Series_Update Tool_UGD	SIM808 Series Update Tool User Guide
[5]	AN_SIM900_AUDIO	Applications Note About SIM808 Audio
[6]	AN_SIM900_Audio LINE-IN input	Applications Note About SIM808 LINE-IN Input
[7]	SIM900_Embedded AT Application Note	SIM808 Embedded AT Application Note
[8]	AN_Serial Port	Application Note About Serial Port
[9]	AN_SIM900-TE PCB Layout & Schematic for Reference	Application Note About SIM808-TE PCB Layout & Schematic
[10]	Module secondary-SMT-UGD	Module secondary SMT User Guide
[11]	ITU-T Draft new recommendation V.25ter:	Serial asynchronous automatic dialing and control
[12]	GSM 07.07:	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[13]	GSM 07.10:	Support GSM 07.10 multiplexing protocol
[14]	GSM 07.05:	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[15]	GSM 11.14:	Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[16]	GSM 11.11:	Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[17]	GSM 03.38:	Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information
[18]	GSM 11.10	Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification

B. Terms and Abbreviations

Table 54: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-Rate
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
CEP	Circular Error Probable
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EGNOS	European Geostationary Navigation Overlay Service
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
FR	Full Rate
GPRS	General Packet Radio Service
GSM	Global Standard for Mobile Communications
GPS	Global Positioning System
GAGAN	The GPS Aided Geo Augmented Navigation
HR	Half Rate
IMEI	International Mobile Equipment Identity
Li-ion	Lithium-Ion
МО	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE
MT	Mobile Terminated
MSAS	Multi-Functional Satellite Augmentation System
NMEA	National Marine Electronics Association
PAP	Password Authentication Protocol
РВССН	Packet Broadcast Control Channel
РСВ	Printed Circuit Board
PCL	Power Control Level
PCS	Personal Communication System, also referred to as GSM 1900
PDU	Protocol Data Unit
РРР	Point-to-point protocol
QZSS	Quasi-Zenith Satellites System
RF	Radio Frequency
RMS	Root Mean Square (value)

RTC	Real Time Clock
RX	Receive Direction
SIM	Subscriber Identification Module
SBAS	Satellite Based Augmentation Systems
SMS	Short Message Service
TE	Terminal Equipment, also referred to as DTE
ТХ	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter
URC	Unsolicited Result Code
USSD	Unstructured Supplementary Service Data
WAAS	Wide Area Augmentation System
Phonebook abbreviations	
FD	SIM fix dialing phonebook
LD	SIM last dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT calls (missed calls)
ON	SIM (or ME) own numbers (MSISDNs) list
RC	Mobile Equipment list of received calls
SM	SIM phonebook
NC	Not connect

C. Safety Caution

Table 55: Safety caution

NC Not connect			
C. Safety Caution Table 55: Safety caution			
Marks	Requirements		
♥	When in a hospital or other health care facility, observe the restrictions about the use of mobiles. Switch the cellular terminal or mobile off, medical equipment may be sensitive to not operate normally for RF energy interference.		
X	The operation communication	cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. of wireless appliances in an aircraft is forbidden to prevent interference with systems. Forget to think much of these instructions may lead to the flight safety or ocal legal action, or both.	
	off the cellular blasting operati	the cellular terminal or mobile in the presence of flammable gases or fumes. Switch terminal when you are near petrol stations, fuel depots, chemical plants or where ons are in progress. Operation of any electrical equipment in potentially explosive in constitute a safety hazard.	
		rminal or mobile receives and transmits radio frequency energy while switched on. e can occur if it is used close to TV sets, radios, computers or other electric	
	vehicle, unless	mes first! Do not use a hand-held cellular terminal or mobile when driving a it is securely mounted in a holder for hands free operation. Before making a call d terminal or mobile, park the vehicle.	

sos

GSM cellular terminals or mobiles operate over radio frequency signals and cellular networks and cannot be guaranteed to connect in all conditions, for example no mobile fee or a invalid SIM card. While you are in this condition and need emergent help, please remember using emergency calls. In order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call.

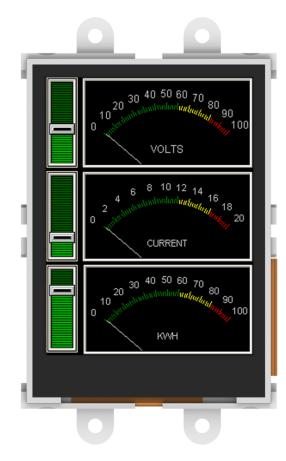
Also, some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.

SIM808_Hardware Design_V1.00

4D SYSTEMS

2.4" microLCD PICASO Display uLCD-24PTU

Document Date: 22nd June 2015 Document Revision: 1.8


Overview


The **uLCD-24PTU** is a compact and cost effective Intelligent Display Module packed with plenty of features, ready to become the GUI for your target application. It is the perfect choice for many applications that require a front end smart graphics interface.

Embedded at the heart of the design is the **PICASO** processor, which is driven by a highly optimised virtual core engine called **EVE** (Extensible Virtual Engine). An extensive range of hardware and software peripherals have been integrated into the design, to give the user freedom to adapt the module to suit almost any application.

The display module is an elegant combination of a 2.4" (240x320) LCD Screen, audio amplifier and speaker, micro-SD card connector, Lithium Ion and Polymer battery support, along with a group of general purpose input/output pins (GPIO's), including I^2C and serial communications.

This module serves as a perfect solution to be deployed at the forefront of any product design, requiring a brilliance of colour, animation or images on any application. This **PICASO** driven Intelligent Display Module is a perfect example of where art meets technology.

The **uLCD-24PTU** has a **2.4**" TFT LCD display at the forefront of the design that showcases the power and capabilities of the PICASO processor. Combining a resolution of **240x320** pixels with **65K** True to Life colours, this module is perfect for animations, slideshows and other multimedia presentations.

Audio support provided on the display module is supplied by the **PICASO** processor, an on-board audio amplifier and 8Ω speaker. A simple instruction enables the user to play audio files while continuing the execution of the Users code, such as display updates, touch recognition, communications and much more.

The **micro-SD** card slot provides the user with expandable memory space suitable for multimedia file retrieval, including images, animations and movie clips, as well as data logging applications.

The module can be programmed in its native 4DGL language (similar to C), using the Workshop4 IDE software tool suite, or it can be configured as a serial slave device to use with your favourite host controller. The freedom is at your fingertips with this 2.4" intelligent microLCD module.

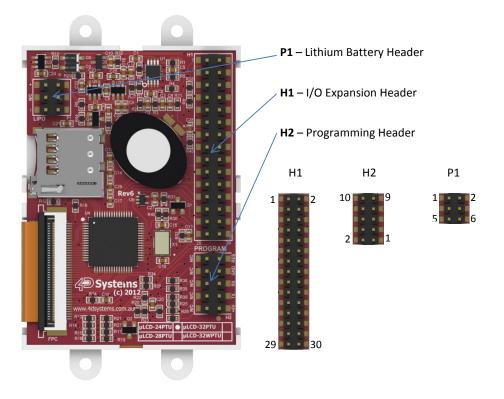
Contents

1. Description	4
2. Features	4
3. Pin Configuration and Summary	5
4. Hardware Interface - Pins	7
4.1. Serial Ports - COM0, COM1 UARTS	7
4.2. General Purpose I/O	7
4.3. System Pins	8
5. PmmC/Firmware Programming	9
6. Module Features	9
6.1. Display – 2.4" TFT Touch Screen	9
6.2. PICASO Processor	9
6.3. Audio	10
6.4. Lithium Batteries	10
6.5. SD/SDHC Memory Cards	10
6.6. FAT16	10
7. Display Precautions	11
8. Hardware Tools	12
8.1. 4D Programming Cable/Adaptor	12
8.2. Development Hardware	12
9. 4DGL - Software Language	13
10. 4D Systems - Workshop 4 IDE	13
10.1. Workshop 4 – Designer Environment	14
10.2. Workshop 4 – ViSi Environment	14
10.3. Workshop 4 – ViSi Genie Environment	14
10.4. Workshop 4 – Serial Environment	14
11. Starter Kit	15
12. Notes	16
13. Mechanical Details	17
14. Schematic Diagram	18
15. Specifications and Ratings	19
16. Hardware Revision History	21
17. Legal Notice	22
18. Contact Information	22

1. Description

The uLCD-24PTU module demonstrates class and finesse in the microLCD range, featuring a 2.4" 240x320 screen resolution that is the ideal size for displaying detailed graphics for many interactive touch applications.

Driving the display and peripherals is the PICASO processor, a very capable and powerful chip which enables stand-alone functionality, programmed using the 4D Systems Workshop 4 IDE Software. The Workshop IDE enables graphic solutions to be constructed rapidly and with ease due to its design being solely for 4D's graphics processors.


The module has an array of features including PWM for Sound, Touch Detection, micro-SD memory storage, Lithium battery support, general purpose I/O, serial communications, an I2C interface and multiple millisecond resolution timers, amongst many more features.

2. Features

- Low-cost 2.4" LCD-TFT display graphics user interface solution.
- 240 x 320 VGA resolution, RGB 65K true to life colours, TFT screen with Integrated 4-Wire Resistive Touch Panel.
- Easy 5 pin interface to any host device: VCC, TX, RX, GND, RESET
- Powered by the 4D-Labs PICASO processor (also available as separate OEM IC)
- 14KB of flash memory for user code storage and 14KB of SRAM for user variables, or 14KB shared user code and program variables.
- 2 x Asynchronous hardware serial ports (COM0, COM1), TTL interface, with 300 to 600K baud.
- 1 x I²C interface (Master).
- 8 x 16 bit timers with 1 millisecond resolution.
- 13 x General Purpose I/O pins. Supports fast 8bit parallel data transfer through Upper 8 bits.
- On-board micro-SD memory card adaptor for multimedia storage and data logging purposes.
 HC memory card support is also available for cards larger than 4GB.
- DOS compatible file access (FAT16 format) as well as low level access to card memory.
- Lithium battery support, with built in battery charger and automatic change-over.
- Dedicated PWM Audio pin driven by WAV files from micro-SD card.
- On-board audio amplifier with a tiny 8Ω speaker for sound generation and WAV file playback.
- Built in extensive 4DGL graphics and system library functions.
- Display full colour images, animations, icons and video clips.
- Supports all available Windows fonts.
- A 30 pin header for I/O expansion and future plug-in daughter boards.
- 4.0V to 5.5V range operation (single supply).
- Module dimensions: 44.7 x 74.75 x 15.9mm (including corner plates). Weighing ~ 34g.
- Display Viewing Area: 36.72 x 48.96mm
- 4 x corner plates with 2.7mm holes for mechanical mounting.
- RoHS Compliant.

3. Pin Configuration and Summary

	H2 Pin Outs (Programming Header)		
Pin	Symbol	I/0	Description
1	+5V	Р	Main Voltage Supply +ve input pin. Reverse polarity protected. Range is 4.0V to
2	+5V	Р	5.5V, nominal 5.0V.
3	ТХ	0	Asynchronous Serial Transmit pin, TTL level. Connect this pin to the Receive (Rx)
4	ТХ	0	signal of other serial devices. Used in conjunction with the RX pin for
			programming this microLCD. This pin is tolerant up to 5.0V levels.
5	RX	Ι	Asynchronous Serial Receive pin, TTL level. Connect this pin to the Transmit (Tx)
6	RX	I	signal of other serial devices. Used in conjunction with the TX pin for
			programming this microLCD. This pin is tolerant up to 5.0V levels.
7	GND	Р	Supply Ground
8	GND	Р	
9	RES	I	Master Reset signal. Internally pulled up to 3.3V via a 10K resistor. An active Low
10	RES	I	pulse greater than 2 micro-seconds will reset the module. If the module needs to
			be reset externally, only use open collector type circuits. This pin is not driven
			low by any internal conditions. The host should control this pin via one of its port
			pins using an open collector/drain arrangement.

I = Input, O = Output, P = Power

	H1 Pin Outs (I/O Expansion Header)		
Pin	Symbol	I/0	Description
1	101	I/O	General Purpose Input Output 1 Pin
			(alternatively used as Frame Mark pin when SB2 is closed)
2	SPK-	0	Speaker Output –ve, for external Speaker
3	102	I/O	General Purpose Input Output 2 Pin
			(alternatively used as Battery Status pin pin when SB3 is closed)
4	SPK+	0	Speaker Output +ve, for external Speaker
5	103	I/O	General Purpose Input Output 3 Pin
			(alternatively used as Peripheral Supply pin when SB1 is closed)
6	SCL	0	I ² C Clock Output
7	104	I/O	General Purpose Input Output 4 Pin
8	SDA	I/O	I ² C Bidirectional Data
9	105	I/O	General Purpose Input Output 5 Pin
10	N/C	-	Not connected
11	GND	Р	Supply Ground
12	N/C	-	Not connected
13	GND	Р	Supply Ground
14	+5V	Р	Supply Input +ve, 4.0V to 5.5V, 5.0V Nominal
15	BUS7	I/O	IO Bus (BUS07) bit 7
16	AUDIO	I/O	Audio Input or Output, TTL Line level
17	BUS6	I/O	IO Bus (BUS07) bit 6
18	AUDENB	I	Audio Amplified Enable, Active High (5V)
19	BUS5	I/O	IO Bus (BUS07) bit 5
20	RES	I	Master Reset, Active Low (GND) (Refer H2 Pinout)
21	BUS4	1/0	IO Bus (BUS07) bit 4
22	3.3V OUT	Р	3.3V Output, 20mA Max supply
23	BUS3	1/0	IO Bus (BUS07) bit 3
24	RX0	I	Asynchronous serial port 0 receive pin. COM0 (same as the RX pin on the H2
			Programming Header)
25	BUS2	1/0	IO Bus (BUS07) bit 2
26	TX0	0	Asynchronous serial port 0 transmit pin. COM0 (same as the TX pin on the H2
			Programming Header)
27	BUS1	I/O	IO Bus (BUS07) bit 1
28	TX1	0	Asynchronous serial port 1 transmit pin. COM1
29	BUS0	1/0	IO Bus (BUS07) bit 0
30	RX1	I	Asynchronous serial port 1 receive pin. COM1

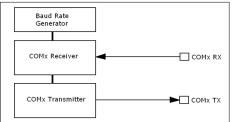
I = Input, O = Output, P = Power

P1 Pin Outs (Lithium Battery Header)			
Pin	Symbol	I/O	Description
1	+	Р	Lithium Ion or Polymer 3.7V Battery +ve Terminal
2	+	Р	Lithium Ion or Polymer 3.7V Battery +ve Terminal
3	N/C	-	Not connected
4	N/C	-	Not connected
5	-	Р	Lithium Ion or Polymer 3.7V Battery -ve Terminal
6	-	Р	Lithium Ion or Polymer 3.7V Battery -ve Terminal

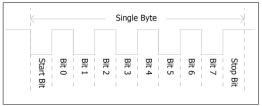
Please refer to section 6.4 prior to using the Lithium Battery Header

I = Input, O = Output, P = Power

4. Hardware Interface - Pins


The uLCD-24PTU provides both a hardware and software interface. This section describes in detail the hardware interface pins of the device.

4.1. Serial Ports - COM0, COM1 UARTS


The uLCD-24PTU has two dedicated hardware Asynchronous Serial ports that can communicate with external serial devices. These are referred to as the COM0 and the COM1 serial ports.

The primary features are:

- Full-Duplex 8 bit data transmission and reception.
- Data format: 8 bits, No Parity, 1 Stop bit.
- Independent Baud rates from 300 baud up to 600K baud.
- Single byte transmits and receives or a fully buffered service. The buffered service feature runs in the background capturing and buffering serial data without the user application having to constantly poll any of the serial ports. This frees up the application to service other tasks.

A single byte serial transmission consists of the start bit, 8-bits of data followed by the stop bit. The start bit is always 0, while a stop bit is always 1. The LSB (Least Significant Bit, Bit 0) is sent out first following the start bit. Figure below shows a single byte transmission timing diagram.

COM0 is also the primary interface for 4DGL user program downloads and chip configuration (PmmC programming). Once the compiled 4DGL application program (EVE byte-code) is downloaded and the user code starts executing. the serial port is then available to the user application. Refer to Section 5. 'Firmware / PmmC Programming' for more details on this subject.

TX0 pin (Serial Transmit COM0):

Asynchronous Serial port COM0 transmit pin, TX0. Connect this pin to external serial device receive (Rx) signal. This pin is 5.0V tolerant.

RX0 pin (Serial Receive COM0):

Asynchronous Serial port COM0 receive pin, RX0. Connect this pin to external serial device transmit (Tx) signal. This pin is 5.0V tolerant.

TX1 pin (Serial Transmit COM1):

Asynchronous Serial port COM1 transmit pin, TX1. Connect this pin to external serial device receive (Rx) signal. This pin is 5.0V tolerant.

RX1 pin (Serial Receive COM1):

Asynchronous Serial port COM1 receive pin, RX1. Connect this pin to external serial device transmit (Tx) signal. This pin is 5.0V tolerant.

4.2. General Purpose I/O

There are 13 general purpose Input/Output (GPIO) pins available to the user. These are grouped as IO1..IO5 (Note for IO1, IO2 and IO3 below) and BUS0..BUS7. Power-Up Reset default is all INPUTS.

The 5 I/O pins (IO1..IO5), provide flexibility of individual bit operations while the 8 pins (BUS0..BUS7), known as GPIO BUS, serve collectively for byte wise operations. The IO4 and IO5 also act as strobing signals to control the GPIO Bus. GPIO Bus can be read or written by strobing a low pulse (50ns duration or greater) the IO4/BUS_RD or IO5/BUS_WR for read or write respectively. For detailed usage refer to the separate document titled:

"PICASO-4DGL-Internal-Functions.pdf"

IO1-IO5 pins:

General purpose I/O pins. Each pin can be individually set for INPUT or an OUTPUT.

IO1-IO3 have also optional functionality when its dedicated Solder Jumper is closed. Please read below for more information.

IO1 pin (Frame Mark pin):

The IO1 pin has 2 functions. It can be used as a GPIO pin (Default on HW >= 13.0 onward) but can also be used to detect the start of a Frame (Default on HW < 13.0). When used as a Frame Mark pin, simply solder it's dedicated solder jumper SB2. When using IO1 for Frame Mark read the status of IO1 as an Input.

IO2 pin (Lithium Battery Status pin):

The IO2 pin has 2 functions. It can be used as a

GPIO pin (Default on HW >= 13.0) but can also be used to tell when the Lithium battery has reached a low level (3.7V) and needs to be charged (Default on HW < 13.0). When used as a Lithium Battery Status pin, simply solder it's dedicated solder jumper SB3. When using IO2 for Battery Status read the status of IO2 as an Input. (See 6.4. 'Lithium Batteries' for more information).

IO3 pin (Peripheral Supply pin):

The IO3 pin has 2 functions. It can be used as a GPIO pin (Default HW >= 13.0) but can also be used as Peripheral Supply pin (Default HW < 13.0) when it's dedicated solder jumper SB1 is closed. IO3 set as Peripheral Supply pin is controllable via the processor, or via the H2 Interface pin driven by an external circuit. If IO3 is set as OUTPUT and driven HIGH the uSD card and Display are enabled, and disabled when driven LO. Set as INPUT to use an external circuit to drive this pin.

IO4/BUS_RD pin (GPIO IO4 or BUS_RD pin):

General Purpose IO4 pin. Also used for BUS_RD signal to read and latch the data in to the parallel GPIO BUS0..BUS7.

IO5/BUS_WR pin (GPIO IO5 or BUS_WR pin):

General Purpose IO5 pin. Also used for BUS_WR signal to write and latch the data to the parallel GPIO BUS0..BUS7.

BUSO-BUS7 pins (GPIO 8-Bit Bus):

8-bit parallel General purpose I/O Bus.

Note: All GPIO pins are 5.0V tolerant.

4.3. System Pins

+5V (Module Voltage Input) H1 pin 14, H2 pin 1 and 2:

Module supply voltage input pin. This pin must be connected to a regulated supply voltage in the range of 4.0 Volts* to 5.5 Volts DC. Nominal operating voltage is 5.0 Volts.

3.3V Out (3.3V Regulated Output) H1 pin 22:

External circuitry that requires a regulated 3.3V supply can be powered up via this pin. Maximum available current is 150mA. Attempting to draw more can result in peripherals such as the microSD card, not working correctly.

GND (Module Ground)

H1 pin 11/13, H2 pin 7 and 8:

Device ground pins. These pins must be connected to ground.

RESET (Module Master Reset) H1 pin 20, H2 pin 9 and 10:

Module Master Reset pin. An active low pulse of greater than 2μ s will reset the module. Internally pulled up to 3.3V via a 10K resistor. Only use open collector type circuits to reset the device if an external reset is required.

SPK-/SPK+ (External Speaker Outputs) H1 pin 2/4 respectively:

External Speaker Outputs, designed to drive an 8Ω speaker to a maximum of 1.2W. These are connected in Parallel with the on board speaker.

AUDENB (Audio Enable Output) H1 pin 18:

Output dedicated to enable or disable an external amplifier if the on-board amplifier is not desirable to use. Controlled by the PICASO processor. When AUDENB is low, the on-board Amplifier is Enabled. When AUDENB is high, the on-board Amplifier is Disabled.

AUDIO (Audio Line Level Input/Output) H1 pin 16:

Universal Input or Output specifically for Audio. This pin connects directly into the on-board amplifier, but also with the filtered PWM output from the PICASO Processor. This pin can be used to input a signal into the on-board amplifier to play audio from an external device using the on-board amplifier, or as a line-level output to drive an external amplifier with PICASO generated Audio. Note that AUDENB must be enabled (low) in PICASO for any input signal to be heard.

+/- (Lithium Battery Terminals) P1 pins 1/2(+ve), 5/6(-ve):

These are the terminals of the Lithium Battery connector. These are to be connected **only** to a Lithium Ion or Polymer 3.7V Battery else the uLCD-24PTU may be damaged. See Section 6.4

5. PmmC/Firmware Programming

The PICASO processor used in the uLCD-24PTU module is a custom graphics processor. All functionality including the high level commands are built into the chip. This chip level configuration is available as a Firmware/PmmC (Personality-module-micro-Code) file.

A PmmC file contains all of the low level microcode information (analogy of that of a soft silicon) which define the characteristics and functionality of the device. The ability of programming the device with a PmmC file provides an extremely flexible method of customising as well as upgrading it with future enhancements.

A PmmC file can only be programmed into the device via its COMO serial port. Figure below provides a typical implementation for the PmmC programming interface.

The PmmC file is programmed into the device with the aid of Workshop 4, the 4D Systems IDE software (See Section 11). To provide a link between the PC and the ICSP interface, a specific 4D Programming Cable is required and is available from 4D Systems.

Using a non-4D programming interface could damage your display, and **void your Warranty**.

Please refer to section 8.1 for more information on 4D programming interfaces.

The uLCD-24PTU module is designed to accommodate most applications. Some of the main features of the module are listed below.

6.1. Display – 2.4" TFT Touch Screen

The uLCD-24PTU module is equipped with a 2.4" TFT display. Details of the display are listed below:

- Screen Size: 2.4" diagonal
- Resolution: 240 x 320
- Integrated 4-Wire Resistive Touch Screen
- Screen Dimensions: 42.70 x 60.25 x 3.70mm
- Viewing Area: 36.72 x 48.96mm
- Pixel Pitch: 0.153 x 0.153mm
- Brightness: 150cd/m2
- Contrast Ratio: 250:1
- Viewing Angle Above Centre: 20 degrees
- Viewing Angle Below Centre: 35 degrees
- Viewing Angle Left of Centre: 40 degrees
- Viewing Angle Right of Centre: 40 degrees
- Viewing Direction: 6 O'clock
- 4 Parallel LEDs for Backlighting

Note: The Displays used are the highest rated 'Grade A' Displays, which allow for 0-4 defective pixels. A defective pixel could be solid Black (Dead), White, Red, Green or Blue.

6.2. PICASO Processor

The module is designed around the PICASO Graphics Controller from 4D-Labs.

The PICASO is a smart Controller and the interface to the TFT- LCD displays is almost plug-n-play.

All of the data and control signals are provided by the chip to interface directly to the display.

Powerful graphics, text, image, animation and countless more features are built right inside the chip.

The data sheet for the processor is available from the <u>http://www.4dsystems.com.au</u> website: *"PICASO-Processor-Datasheet-REVx.pdf"*

6.3. Audio

Audio playback support in the PICASO Processor enables the uLCD-24PTU module to play audio WAV files stored in the micro-SD memory card. PWM and an on-board audio amplifier with 8Ω speaker ensure ample audio output capability. A simple instruction enables the user to play/pause/stop audio files while continuing the execution of the user application code, such as display updates, touch recognition, communications, etc. The audio system also allows real time pitch change of audio samples.

For a complete list of audio commands please refer to the separate document titled: *"PICASO-4DGL-Internal-Functions.pdf"*

Note: The on-board speaker is a small device designed to project into an audio cavity. It is not very loud by itself. To enable louder audio, it is recommended to use a larger external 8Ω speaker. See the 'Hardware Interface Pins' – 'System Pins' section for more information.

6.4. Lithium Batteries

The uLCD-24PTU module includes a battery charging circuit suitable for Lithium Ion (Lilon) and Lithium Polymer (LiPo) batteries, which is designed to work **only** with 3.7V batteries. If anything other than a Lilon or LiPo 3.7V battery is connected the module could be damaged. Features current sensing and reverse discharge protection using an on board Lithium charge management controller.

When the Lithium battery is connected and an external source (4.5V minimum) is connected to either of the +5V pins, the Lithium battery will be charged automatically. If the 5V source is disconnected, the Lithium battery will be switched in circuit and continue to power the module automatically.

Charge voltage = 4.2V, Charge current = ~210mA

When running from the Lithium battery, when the battery level drops down to ~3.7V, the Status input (connected to IO2) into the Picaso will be triggered indicating the battery is discharged. The display should then be connected to an external

5V source for charging. When the battery is at this cut off voltage, uSD card read and write operations should be avoided, as they may fail due to low voltage. It is up to the User to handle the operation of the display module when using a Lithium Battery.

WARNING: There is a large range of Lithium batteries available on the market. Some include safety circuits built in, while others do not. Lithium batteries can explode if short circuited, overcharged, if they get too hot, and can leak if they sit fully discharged for a prolonged period.

4D Systems recommends whenever Lithium batteries are used that caution and due diligence should be exercised to ensure the safety of the user and nearby people. While the chances of explosion or leakage may be minimal, 4D Systems recommends safe practices at all times when dealing with these batteries.

If Lithium Batteries are powering the module, it is highly recommended to periodically monitor the STAT pin. If the module is put to sleep, periodically wake the module to check the STAT pin.

6.5. SD/SDHC Memory Cards

The module supports micro-SD memory cards via the onboard micro-SD connector. The memory card is used for

all multimedia file retrieval such as images, animations and movie clips. The memory card can also be used as general purpose storage for data logging applications. Support is available for off the shelf micro-SD and high capacity HC memory cards (4GB and above).

Note: A microSD card capable of SPI is a requirement for all 4D Systems' display modules powered by Goldelox, Picaso or Diablo16 Processors. If a non-SPI compatible card is used, it will simply fail to mount, or may cause intermittent issues resulting in lock ups and crashing of the application. Please refer to the 4D Systems website for microSD cards offered by 4D Systems.

6.6. FAT16

The uLCD-24PTU uses off the shelf standard SDHC/SD/micro-SD memory cards with up to 2GB capacity usable with FAT16 formatting. For any FAT file related operations, before the memory card can be used it must first be formatted with

FAT16 option. The formatting of the card can be done on any PC system with a card reader. Select the appropriate drive and choose the FAT16 (or just FAT in some systems) option when formatting. The card is now ready to be used in the PICASO based application.

The uLCD-24PTU also supports high capacity HC memory cards (4GB and above). The available capacity of SD-HC cards varies according to the way the card is partitioned and the commands used to access it.

The FAT partition is always first (if it exists) and can be up to the maximum size permitted by FAT16. Windows 7 will format FAT16 up to 4GB. Windows XP will format FAT16 up to 2GB and the Windows XP command prompt will format FAT16 up to 4GB.

7. Display Precautions

• Avoid having to display the same image/object on the screen for lengthy periods of time. This will cause a burn-in which is a common problem with all types of display technologies. Blank the screen after a while or dim it very low by adjusting the contrast. Better still; implement a screen saver feature.

• Moisture and water can damage the display. Moisture on the surface of a powered display will cause the electrodes to corrode. Wipe off any moisture gently or let the display dry before usage.

• Dirt from fingerprint oil and fat can easily stain the surface of the display. Gently wipe off any stains with a soft lint-free cloth.

• The performance of the display will degrade under high temperature and humidity. Avoid such conditions when storing.

• Do not tamper with the display flex cable that is connected to the control board. This may affect the connection between the display and the driving circuitry and cause failure.

• Displays are susceptible to mechanical shock and any force exerted on the module may result in deformed zebra stripes, a cracked display cell and broken backlight

• Always use the mounting holes on the module's corner plates to mount the display.

8. Hardware Tools

The following hardware tools are required for full control of the uLCD-24PTU module.

8.1. 4D Programming Cable/Adaptor

The 4D Programming Cable and uUSB-PA5 Programming Adaptor are essential hardware tools to program, customise and test the PICASO Processor.

Either the 4D Programming Cable or the uUSB-PA5 Programming Adaptor can be used.

The 4D programming interfaces are used to program a new Firmware/PmmC and for downloading compiled 4DGL code into the processor. They even serve as an interface for communicating serial data to the PC.

The 4D Programming Cable and uUSB-PA5 Programming Adaptor are available from 4D Systems, <u>www.4dsystems.com.au</u>

Using a non-4D programming interface could damage your processor, and **void your Warranty.**

4D Programming Cable

uUSB-PA5 Programming Adaptor

8.2. Development Hardware

4D Systems has designed a development board compatible with the uLCD-24PTU, enabling easy prototyping to take place and to experiment with the uLCD-24PTU display module.

This development board is called the 4DevBoard, and is available from the 4D Systems website store, or from 4D Systems distributors.

9. 4DGL - Software Language

The uLCD-24PTU utilises the PICASO processor, which belongs to a family of processors powered by a highly optimised soft core virtual engine, EVE (Extensible Virtual Engine).

EVE is a proprietary, high performance virtualmachine with an extensive byte-code instruction set optimised to execute compiled 4DGL programs. 4DGL (4D Graphics Language) was specifically developed from ground up for the EVE engine core. It is a high level language which is easy to learn and simple to understand yet powerful enough to tackle many embedded graphics applications.

4DGL is a graphics oriented language allowing rapid application development, and the syntax structure was designed using elements of popular languages such as C, Basic, Pascal and others.

Programmers familiar with these languages will feel right at home with 4DGL. It includes many familiar instructions such as IF..ELSE..ENDIF, WHILE..WEND, REPEAT..UNTIL, GOSUB..ENDSUB, GOTO, PRINT as well as some specialised instructions SERIN, SEROUT, GFX_LINE, GFX_CIRCLE and many more.

For detailed information pertaining to the 4DGL language, please refer to the following documents: "4DGL-Programmers-Reference-Manual.pdf" "PICASO-4DGL-Internal-Functions.pdf"

To assist with the development of 4DGL applications, the Workshop 4 IDE combines a full-featured editor, a compiler, a linker and a down-loader into a single PC-based application. It's all you need to code, test and run your applications.

4DGL is available to be written in two of the four environments offered by the Workshop 4 IDE, Designer and ViSi.

10. 4D Systems - Workshop 4 IDE

Workshop 4 is a comprehensive software IDE that provides an integrated software development platform for all of the 4D family of processors and modules. The IDE combines the Editor, Compiler, Linker and Down- Loader to develop complete 4DGL application code. All user application code is developed within the Workshop 4 IDE.

l •		Wodshep 4		hend.00
	and the second second		Recent	
Open	States in the second		BUFFERED TX-40G	6/06/2010 1:33 a.m.
Pacart			C:ProgramDiete/Documents/HD Labe/PSC connects/United/State/PSC	ASO-GPIC/PICASO-SERIAL
		AD EVETENCE	COMCHECK-4DG	4/06/2018 2:41 8/5.
	V	4D SYSTEMS	CriPrograndute/Documenta/40 Labo/PEC CDVINESCOMOHECK/BD	ASD GPIC/PICASD-32894
Sector	Transactor of the other		SLIDETRACK 4DVIS	4/12/2012 1:50 p.m.
Render			C (Programiliate/Documents)/ID Labs/Pro	ec/10/01/07980/40/6
24 Acres			SWITCHANDKNOB.4DVISI	13/13/2013 5:52 p.m.
			C/Lises/Adi/CDocuments/ADI.ebs/Aci	
	WORK	SHOP Version 4.0.2.1	MP3-Player-40ViSi	4/11/2012 11:04 p.m.
Print Service			C (Program Data) Documenta (HD Lator/Pro	ec visiones developes
			FANCYBUTTONS 4DVISI	21/12/2011 1:00 p.m.
Ortous	লে ব	Create a new Project	Criftograndskejbourrants/40 Labs/Pro	
opeans			MP3-Player-40ViSi	4/11/2012 1:04 p.m.
Heb			Cristen/PublicDoovershittbulkelPro	++ VIs//P2 #we/D/S
ANSING T			James Test, 40VISi	27/18/2012 1:47 p.m.
Sampler	-	Create a new Project	C(ProgramDutur)/D Lubo/Pro	exital/Jame/Rel-KV/S
bt	1	Start building a new program using the same pettings as you lost used (Visi-Carvie	SWITCHANDKNOB.40VISI	11/11/2015 8:52 p.m.
		ulco anto)	C/ProgramCada/Documents14D Labe/Pro	eevis/0470-RIDROB/DVS
			SLIDETRACK.4dg	22/18/2012 3.42 p.m.
			C:ProgramData/Documents/AD Labo/Pro	ee Vis/(SLEETACKAg

The Workshop 4 IDE supports multiple development environments for the user, to cater for different user requirements and skill level.

- The **Designer** environment enables the user to write 4DGL code in its natural form to program the uLCD-24PTU.
- A visual programming experience, suitably called ViSi, enables drag-and-drop type placement of objects to assist with 4DGL code generation and allows the user to visualise how the display will look while being developed.
- An advanced environment called ViSi-Genie doesn't require any 4DGL coding at all, it is all done automatically for you. Simply lay the display out with the objects you want, set the events to drive them and the code is written for you automatically. ViSi-Genie provides the latest rapid development experience from 4D Systems.
- A Serial environment is also provided to transform the uLCD-24PTU into a slave serial module, allowing the user to control the display from any host microcontroller or device with a serial port.

The Workshop 4 IDE is available from the 4D Systems website. <u>www.4dsystems.com.au</u>

For a comprehensive manual on the Workshop 4 IDE Software along with other documents, refer to the documentation from the 4D Systems website, on the Workshop 4 product page.

10.1. Workshop 4 – Designer Environment

Choose the Designer environment to write 4DGL code in its raw form.

The Designer environment provides the user with a simple yet effective programming environment where pure 4DGL code can be written, compiled and downloaded to the uLCD-24PTU.

1.0			ls Con									Web	ship	4 - BAA	SECON	racua	DiviCD-	129710)											0 0	
II)	n	See 8	Savek		pi l	%	1			×		0	2	×6 Dest Al			1	C Fm				RMAD	in	Collapse			Carr		Correginal as	d
		File					0	pboard			Und	u:Redo			Book	marks				Fr	4			Ced	e Felc	ling		Core	pile	
	NGECONT																													
	platte																													
	// 200																													
	// Just		andy i		** *		- 150					- 104	** 0			4 518														
1	encor: a	LUST	A3H /,	(exe	sute	the	deno	44.5	op i	level	prog	, ler	ving	neso	ty an	ailab	e for	overl	875	00										
	loosat	tot b	Into 1	100.00	20																									
				Louis a	2.0																									
	// use	ful e	numer:	tion	000	espo	nding	0.00	be l	DAT 1	ile i	ndex																		
13004	#COBIST KBC																													
	KRO							keybs keybs																						
	911																													
	(ESD)																													
	var Dr		11 0																											
	var *21			hand)		r (m		ion tre	1																					
22 1	var but	ttert	20131																											
	fune m	sin()																												
			(FORT		_	_																								
			Toun!																											
		(! (D	*file	Mos	at D																									
320		wh i	20(1()																											
						~~~		-																						
and a		ed Col																												

#### 10.2. Workshop 4 – ViSi Environment

ViSi was designed to make the creation of graphical displays a more visual experience.

ViSi is a great software tool that allows the user to see the instant results of their desired graphical layout. Additionally, there is a selection of inbuilt dials, gauges and meters that can simply be placed onto the simulated module display. From here each object can have its properties edited, and at the click of a button all relevant 4DGL code associated with that object is produced in the user program. The user can then write 4DGL code around these objects to utilise them in the way they choose.

- F	Mare Toold	Widgets Comm	an detect	Workshop	- TANCIBU	ITTORS (JLCD-)	LIPTU, PO	(T\$4.8778C					benide a
N Ogain Sa	an Sevelo	Pres Col	Cray Parts Data Cray Parts Data	re UnderTede	CearAl	e e	K.S.	9 L	ginea Gets	FREAGES	Collegeed Deard Code Folding		Complicant
		- исалов	×										
1 /	Cform *u20										form3		6
:	stei	Di Decembre						:			1	foggie	2
	escription	pode to pu	of the verious sport it as a to destary futtoo, of interlocking	Finbertens 2-	*inbuttor	s2 has code	to su	pport .			1	<b>A</b>	
	otes	defined 2. Kten us	ing 'Status' me	AREAR YOU DOG	d to entry	are that ho	th are	:					
		Pight i 3. With th	and are the set a both states. s code used here d (eg iFinbotto	. all grouped	AUTTORS	must be con	10eciti	ively .			1	Scores -	
		this mi- to make	eoutive numbers, ght not be the the code smarth battons togeth	er, reorder th	scourd, a	and you don	C VAR					01103	10
: 								;					
	erit "1001	16611Colour	s.feo*								0		U
e #1nhe		alConst.inc*									Olject Inspector		
i finhe		WittoneCone	5.180 ⁴								Object		
ie ruie	man()		.)+								Property	ne Code   (Pasi Volue	e al Cade
											Name Bighpe	Color Color	

### **10.3.** Workshop 4 – ViSi Genie Environment

ViSi Genie is a breakthrough in the way 4D Systems' graphic display modules are programmed. It is an environment like no other, a code-less programming environment that provides the user with a rapid visual experience, enabling a simple GUI application to be 'written' from scratch in literally seconds.

ViSi Genie does all the background coding, no 4DGL to learn, it does it all for you.

Pick and choose the relevant objects to place on the display, much like the ViSi Environment (See Section 11.2), yet without having to write a single line of code. Each object has parameters which can be set, and configurable events to animate and drive other objects or communicate with external devices.

Simply place an object on the screen, position and size it to suit, set the parameters such as colour, range, text, and finally select the event you wish the object to be associated with, it is that simple.

In seconds you can transform a blank display into a fully animated GUI with moving sliders, animated press and release buttons, and much more. All without writing a single line of code!

ViSi Genie provides the user with a feature rich rapid development environment, second to none.



#### **10.4.** Workshop 4 – Serial Environment

The Serial environment in the Workshop 4 IDE provides the user the ability to transform the uLCD-24PTU into a slave serial graphics controller.

This enables the user to use their favourite microcontroller or serial device as the Host, without having to learn 4DGL or program in a separate IDE. Once the uLCD-24PTU is configured

and downloaded to from the Serial Environment, simple graphic commands can be sent from the users host microcontroller to display primitives, images, sound or even video.

Refer to the **"Serial Command Set Reference Manual"** from the Workshop 4 product page on the 4D Systems website for a complete listing of all the supported serial commands

By default, each module shipped from the 4D Systems factory will come pre-programmed ready for use in the Serial mode.

# **11. Starter Kit**

4D Systems highly recommends all first time buyers of 4D Systems' displays, to purchase the Starter Kit when purchasing their first 4D Systems display solution.

The Starter Kit provides all the hardware that is required to get the user up and running.

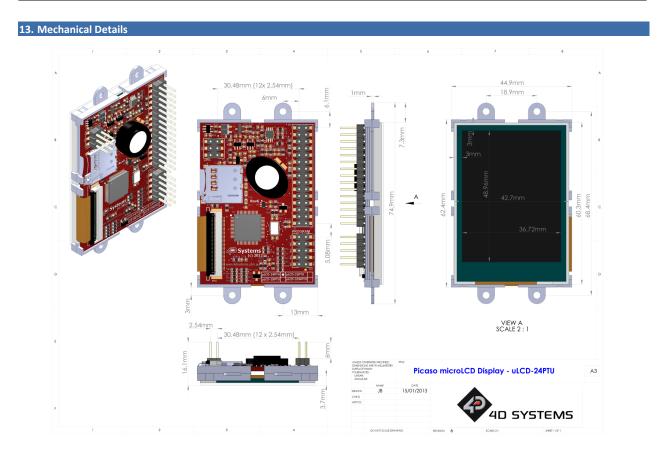
Not all development environments and features will be needed by every user, however by purchasing the display solution in a Starter Kit, it ensures that if you want to take full advantage of the 4D Systems display solution and try out each of the 4D Workshop4 Environments, upgrade PmmC/firmware, you can.

The **Designer** environment can utilise every feature of the display, however depending on the user requirements, a micro-SD (uSD) card may not be required. The uSD card is used when displaying images/video/sound, along with datalogging to uSD, and a programming cable is definitely required for downloading compiled code and PmmC/Firmware updates.

The **ViSi** environment is the same as Designer in terms of feature utilisation, but is image based so requires a uSD card, along with a programming cable.

The **ViSi-Genie** environment is also image based, and therefore requires a uSD card and programming cable also.

The **Serial** environment does not require either a uSD or Programming cable to be used, however can utilise both depending on the user requirements. The uSD card can be used for such things as storage of multimedia files and datalogging, and the Programming cable for PmmC/Firmware updates, or changing to one of the other three programming environments.

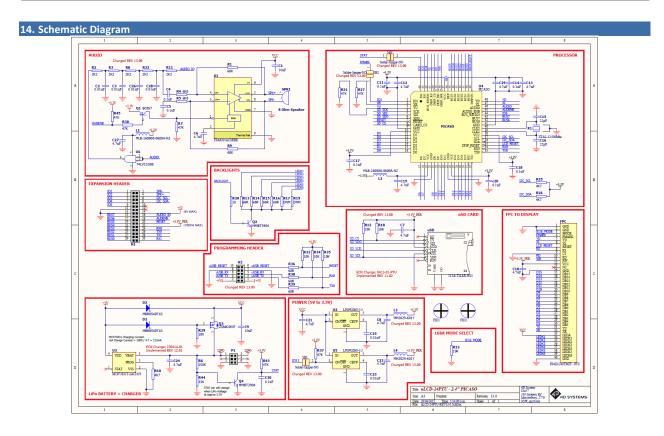

The Starter Kit includes:

- 4D Programming Adaptor or Cable
- 2Gb microSD Card
- 5 way cable for easy connection to a breadboard or host
- Display Module
- Quick Start Guide

Simply select the Starter Kit option when purchasing the chosen display module on the 4D Systems shopping cart, or from your local distributor.

# 12. Notes





© 2015 4D SYSTEMS

Page 17 of 22

www.4dsystems.com.au

#### 4D SYSTEMS

#### uLCD-24PTU



© 2015 4D SYSTEMS

Page 18 of 22

www.4dsystems.com.au

# **15. Specifications and Ratings**

# ABSOLUTE MAXIMUM RATINGS

Operating ambient temperature15°C to +65°C
Storage temperature30°C +70°C
Voltage on any digital input pin with respect to GND0.3V to 6.0V
Voltage on SWITCH pin with respect to GND
Voltage on VCC with respect to GND0.3V to 6.0V

**NOTE**: Stresses above those listed here may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the recommended operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

# **RECOMMENDED OPERATING CONDITIONS**

Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage (VCC)		4.0	5.0	5.5	V
Operating Temperature		-10		+60	°C
Input Low Voltage (VIL)	VCC = 3.3V, all pins	VGND		0.2VCC	V
Input High Voltage (VIH)	VCC = 3.3V, non 5V tolerant pins	0.8VCC		VCC	V
Input High Voltage (VIH)	All GPIO pins, RX0 and TX0 pins	0.8VCC		5.5	V
Reset Pulse	External Open Collector	2.0			μs
Operational Delay	Power-Up or External Reset	500		3000	ms

# GLOBAL CHARACTERISTICS BASED ON OPERATING CONDITIONS

Parameter	Conditions	Min	Тур	Max	Units
Supply Current (ICC)	VCC = 5.0V, heavily depends on screen usage conditions, sleep mode	10	125	220	mA
Output Low Voltage (VOL)	VCC = 5.0V, IOL = 3.4mA			0.4	V
Output High Voltage (VOH)	VCC = 5.0V, IOL = -2.0mA	2.4			V
Capacitive Loading	All pins			50	рF
Flash Memory Endurance	PICASO PmmC Programming		10000		E/W

TOUCH SCREEN CHARACTERISTICS							
Parameter	Conditions	Min	Тур	Max	Units		
Linearity				<1.5	%		
Terminal Resistance X	X film side	300	400	800	Ohm		
Terminal Resistance Y	Y film side	300	600	800	Ohm		
Durability – Scratch Test	Stylus Pen or Finger Sliding	100			К		
Durability – Tap Test	Stylus Pen or Finger Press	1			Million		
Transparency	Non Glare	80			%		

	OPT		CS			
	Parameter	Condition	Min	Тур	Max	Units
Contrast ratio (	Centre point)			250		
Luminance of white (Centre point)			160	200	230	Cd/m ²
White Uniformity		-	80			%
Response Time	Rising + Falling (Tr + Tf)			30		ms
	White, Wx		0.283	0.303	0.323	
	White, Wy	Back-light On	0.305	0.325	0.345	
	Red, Rx		0.606	0.626	0.646	
Colour	Red, Ry		0.614	0.334	0.354	
Chromaticity (CIE 1931)	Green, Gx	-	0.257	0.277	0.297	
(012 1991)	Green, Gy	-	0.529	0.549	0.569	
	Blue, Bx	-	0.122	0.142	0.162	
	Blue, By		0.102	0.122	0.142	1
	Vertical above Centre			20		
	Vertical below Centre	Contract Patio > 10			Degra	
Viewing Angle	Horizontal Left of Centre	Contrast Ratio <a> 10</a>			Degree	
	Horizontal Right of Centre			40		

# ORDERING INFORMATION

Order Code: uLCD-24PTU

Package: 105mm x 65mm x 30mm

Packaging: Module sealed in antistatic foam padded 4D Systems Box

© 2015 4D SYSTEMS

# 16. Hardware Revision History

Revision	Date	Description
Number		
6	12/06/2012	Initial release of PTU revision
8	10/07/2012	<ul> <li>R29 / R32 / R6 /R44 have changed values</li> </ul>
11.1	19/02/2013	Resistor R46 has been implemented to enable GPIO usage for IO3
		if removed
		Resistor R22 is no longer mounted
		<ul> <li>Resistors R8, R28, R29, R32, R44 have changed values</li> </ul>
11.2	26/02/2013	<ul> <li>R18 specified as 1M2, must be Do Not Mount (DNM) and not</li> </ul>
		inserted during SMT
12.1	23/04/2014	Battery charging circuit has been improved
13.0	29/04/2015	Resistors R7, R28, R46 have been removed and replaced with
		solder jumpers (SB1 / SB2 /SB3)
		Both sides of the H2 Programming Header are now connected to
		its dedicated signals
		<ul> <li>Audio Amplifier circuitry has been improved to remove</li> </ul>
		background noise
		<ul> <li>Power circuit has been changed: U2 &amp; U5 are different</li> </ul>
		components now and L3 and L4 have been added. 30Pin Header
		3.3V output can deliver 150mA instead of 20mA. R4 current
		limiting resistor has been removed.
		<ul> <li>SD Card circuit has been changed: R18 is now 10k Resistor.</li> </ul>

# 17. Legal Notice

#### **Proprietary Information**

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position with 4D Systems. 4D Systems reserves the right to modify, update or makes changes to Specifications or written material without prior notice at any time.

All trademarks belong to their respective owners and are recognised and acknowledged.

#### **Disclaimer of Warranties & Limitation of Liability**

4D Systems makes no warranty, either expressed or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

Images and graphics used throughout this document are for illustrative purposes only. All images and graphics used are possible to be displayed on the 4D Systems range of products, however the quality may vary.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental damage ('High Risk Activities'). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems' products and devices in 'High Risk Activities' and in any other application is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any 4D Systems intellectual property rights.

# **18. Contact Information**

For Technical Support: support@4dsystems.com.au

For Sales Support: sales@4dsystems.com.au

Website: www.4dsystems.com.au

Copyright 4D Systems Pty. Ltd. 2000-2015.

#### Reference available by request

# Zohaib Arshad

4920 Sorento Road, Sacramento, CA, 95835

### **OBJECTIVE:**

Engineering position to apply my technical abilities and education.

#### EDUCATION:

**Bachelors of Science** Electrical and Electronics Engineering, CSU Sacramento

**RELATED COURSES:** 

Electronics II*	Power System Analysis	Probability and Random Signals
CMOS and VLSI Design*	Modern Communication System	Signal Processing and Linear Syste
Feedback Systems*	Microprocessor Design	Applied Electromagnetics
Feedback Systems [*]	Microprocessor Design	Applied Electromagnetics

#### **KNOWLEDGE AND SKILLS**

Programming (Familiar):	PHP • C/C++
Software Applications:	MS Office 2003 – 2013 • Cadence PSpice • Cadence Virtuoso • Quartus II • ModelSim-Altera • NI
	Multisim 13.0
Operating Systems:	Windows 10 • Windows 7 • OS X
Verbal Languages:	Bilingual: English/Punjabi

### WORK EXPERIENCE:

#### **Division of Design and Construction Engineering Intern**

Research and design possible solutions to various projects using test data and drawings such as building, switchgear and device layouts. Review contract submittals to confirm contractor has met the Bureau of Reclamation standards while also taking into consideration the input of electrical, civil and mechanical engineers overseeing each project. Plan, budget, present and execute annual equipment purchases, modernize office workflow through training and implementing IT solutions. Maintaining engineering design and support document archives, and inventory of all IT equipment in the division through cloud based services. Trouble shoot various issues involving workstations, network connectivity, software accessibility and printers.

**US Bureau of Reclamation** 

#### Sales Associate

**Old Navy** 

Duties included providing excellent customer service, cashier, greeting customers, recovery of products and maintaining a clean and organized environment.

#### **PROJECT EXPERIENCE:**

#### Microprocessor Design Project – R/C Vehicle

Designed an Autonomous object avoiding car using the Arduino Uno microcontroller and an ultra-sonic servo sensor. Also assisted team member creating an android app to control the car via Bluetooth. This was completed over a 4 week period. The team consisted of four members. We presented the results covering details of each mode, Autonomous and Bluetooth, time management, problem, testing, debugging and total cost analysis.

#### **ACTIVITIES AND ACCOMPLISHMENTS:**

IEEE Member: Fall 2014 - Present Dean's Honor List: Fall 2013, Spring 2014, Fall 2014 MEP Academic Mentor: Spring 2015 SHPE Member: Fall 2013-Present NSBE Member : Fall 2013-Present MESA/MEP Member: Fall 2013-Present

Zohaib.arshad12@gmail.com

09/14 - Present

# Fall 2013

05/10 - 08/14

# Expected Graduation: Spring 2016

tems

(916) 388 - 4433

# Jashanjit S. Badwal

9551 Fox Wind Court, Elk Grove, CA 95758

**OBJECTIVE:** To obtain a challenging position in computer engineering where I can apply my technical abilities and expertise.

#### **EDUCATION**

In progress: BS, Computer Engineering • CSU Sacramento • Certified Java Developer • Silicon Valley Career Institute Certified J2EE Web Developer • Silicon Valley Career Institu RELATED COURSES	07/2012
Advanced Logic Design	Programming Concept and Methodology I & II
Computer Hardware System Design	Introduction to Computer Architecture
Network Analysis of Circuits	Introduction to System Programming in Unix
Signal Processing and Linear System	Data Structures and Algorithm Analysis
Probability & Random Signal	Operating System Principles
Computer Network & Internet	Advance Computer Organization
Electronics I	Operating System Pragmatic
Embedded Processing System Design	Senior Design Project I*
CMOS & VLSI*	*In Progress as of Fall 2015

#### STRENGTHS

Software: Xilinx ISE, Quartus Altera, PSpice, JGrasp, Multisim, Eclipse, Netbeans, MS Office Hardware: Power Analyzer, Max32, Spartan 3E, FPGA, Oscilloscope, Analogy Discovery, Arduino, Propeller, Raspberry Pi, **Microchip Picket 3** 

Languages: Java, C/C++, HTML, JavaScript, Verilog, VHDL, X86 Assembly, Visual Studio Operating Systems: Windows 8.1, Windows 8, Windows 7, Windows XP, Android, Linux, Unix

#### PROJECT EXPERIENCE

Embedded Systems Project – Autonomous Swarm Spring 2015 Designed, constructed and tested an embedded processor system project. All address decoding, control functions, input and output ports, handshaking signals and interrupt control was implemented in an FPGA. The system interfaces to a microcontroller system. This project needed the use of an assembler, a C compiler and either VHDL or Verilog to fully validate our project. Laboratory techniques include oscilloscopes, logic analyzers, protocol analyzers and programmers for EPROMs, FLASH and microcontrollers. We used several communication boards such as Arduino Uno, Mega, and the Microchip Max32 combined with the communication protocol such as SPI bus, I2C, UART, and Bluetooth. A project consisted of a swarm of R/C cars collaborating together with TARS(a Marine corps robot from the movie Interstellar) and a robotic arm to perform surveying of new land as well as reconnaissance. The cars communicated with each via the different protocols we studied in class and used various sensors to determine the location of a specific object object.

#### 16- bit MIPS Processor

Worked in a two-person team through the design and development and implementation phase of a 16-bit MIPS processor with a 5stage pipeline. Behavioral modeling in Verilog was used to implement load/Store word operation, integer arithmetic, and branching, Simple branch prediction, forwarding and hazard detection were also implemented.

 Microprocessor Design Project – R/C Vehicle
 Fall 2013

 Designed a Weaponized remote controlled vehicle that was using an Android application using the Arduino UNO microcontroller. User commands were sent to via a Bluetooth socket connection, with the Android Application as the master and the Arduino UNO microcontroller as the slave. The weapon system uses a modified nerf gun with electronically controlled trigger system. Aiming makes use of servo motors and the Arduino UNO microcontroller and aim is controlled with the Android App.

#### WORK EXPERIENCE

#### Software Intern Undergrad Lvl

6/14 to Present Intel Corporation Assist the Bluetooth Systems & Architecture team by supporting the Requirements Engineering work methodology. Manage the requirements in the JAMA tool, enabled requirements reuse from Marketing to Product to Feature requirements, enable requirement to test case coverage, and develop scripts to create an easy-to-use development flow. Perform Power Optimization tests on different platform for Bluetooth using Power Analyzer and ProBite tools. Working with System Validation Engineers to successfully complete the Power Automation Project for Bluetooth.

#### Hardware Support

SMUD Assist with various PC support activities related to the movement of computer equipment and materials, as well as configuration and installation of personal computers. Use Altiris Deployment Solutions to push out images to desktops and laptops. Create new asset/update the existing asset for each user's hardware equipment.

#### **Client Services Helpdesk Support**

CA Dept of Education Provided Level 1 support to end users on Outlook, Virus, active directory, and on hardware, and software problems. Worked with email, LAN, and WAN team, installing images, clearing port security, preparing documentations for various procedures, completed projects like hardware and software inventory, configuring Outlook 2007 and 2010 to integrate with Project 2003.

#### Hardware Assembler

**Chase/WAMU Conversion Project** Worked as team member for assembling new desktop computers, monitors and peripherals. Disassembled old computer equipment. Installed basic peripherals, including pin pads and check scanners. Troubleshoot network connectivity and resolved hardware/software problems that allow proper desktop functionality.

#### ACTIVITIES:

Member of Association of Computer Machinery

# Fall 2014

# 9/13 to 11/13

#### 9/06 to 8/12

# 10/09

(916) 548-6355

# Leonardo Jacobo

(916)595-0877

leonardojacobo98@gmail.com

www.linkedin.com/in/leonardojacobo

9/15 to Present

1/15 to 8/15

8/14 to 1/15

**OBJECTIVE:** Pre-professional engineering position.

EDUCATION: Bachelor of Science, Computer Engineering (Spring 2016), GPA 3.0 (current), CSU Sacramento RELATED COURSES:

System Programming in Unix

Computer hardware system design Data structures and Algorithm Analysis Advanced Computer Organization Operating System Pragmatics Network AnalysisComputer InterfacingSignals and SystemsOperating System PrinciplesAdvanced Logic DesignCMOS and VLSI DesignComputer Network and InternetElectronics IEmbedded Processor System Design

#### **KNOWLEDGE AND SKILLS**

**Programming:** HTML, Java, C, C#, C++, Verilog, VHDL, Assembly, Lua, Python, Perl, Powershell, AngularJS **Systems:** Windows, Linux, Unix **Bilingual:** English/Spanish(speaking and writing) **Other skills:** Demonstrates ability to execute advance communication skills in both technical and business domain; adept in managing a large number of colleagues and projects in high-profile organizations; Systematic & Dynamic problem-solver with the ability to assess various constituent group needs.

#### **PROJECT EXPERIENCE:**

#### **Embedded Systems Project:**

Part of a five person team, with a three week limit on creating a project from the ground up. The objective of the design was to construct an automated RC swarm that would perform reconnaissance in a specified area. Utilized various laboratory techniques including oscilloscopes, logic analyzers, protocol analyzers and programmers for EPROMs, FLASH and microcontrollers, while addressing decoding, control functions, input and output ports, handshaking signals and interrupt controls on a FPGA. Several communication boards were implemented such as Arduino Uno, Mega, and the Microchip Max32 combined with the following communication protocols SPI bus, I2C, UART, and Bluetooth. The validation/debugging process required the use of an assembler, C compiler, and Verilog

**Microprocessor Design Project R/C Car:** As a member of a four person microprocessor project team, designed an autonomous object-avoiding car that was controlled via an Android application. The system was controlled through the Arduino UNO micro controller. The autonomous portion of the project utilized an ultrasonic sensor mounted on top of a servo motor. The end user commands were sent through an Android application using the Bluetooth 2.1 protocol, via a socket connection, with the Android application acting as the master and the Arduino UNO microcontroller with Bluetooth module as the slave. The Android application allowed on the spot enabling of autonomous mode. Manual control was available by the simple click of a button on the application.

**16-Bit MIPS CPU:** Constructed and simulated the data path and control unit for a 16 bit, pipelined, MIPS CPU for a given instruction set of 18 instructions. Used a 4-stage pipeline data path including hazard detection as well as an ALU control unit. Implemented our design in Verilog and executed simulations to exhaustively examine individual components as well as validating the complete design with assembly programs provided by instructor.

**Student facilitator, Havok Project Anarchy Hack-a-thon Fall 2013:** Facilitated in a 30 hour long Intel sponsored Hack-athon for high school students. The students used the Project Anarchy design suite which is a complete end to end game engine and state-of-the-art toolset for mobile applications. As a facilitator I assisted the students by answering questions about the engine and recommending design methods. Gained proficiency in Lua, a fast, lightweight, embeddable scripting language, as well as extensive knowledge about Vforge.

#### WORK EXPERIENCE:

#### Non-Volatile Solutions Group Solid-State Drive Intern, Intel Corporation, 28 hours/week

Responsible for creating and maintaining a web interface framework for product validation status/indicators, mapping validation testing to the product requirements document and helping instrumenting debug activities using a Protocol Analyzer, Oscilloscope etc). Work on non-volatile memory from material science and process research, through component design, manufacturing, ASIC, board, solid state drives and SW solutions. Deliver disruptive solutions that are transforming computing across all segments from Internet Portal Data Centers (IPDCs) to Consumer Client Devices such as Ultrabooks and Tablets

#### Data Center Engineering Computing Intern, Intel Corporation, 20 hours/week

Student intern in work-study program, gaining valuable understanding of state-of-the-art operating systems, virtual environments, system management, network storage and encryption while learning how to build and maintain various client/server architectures. Assisted in VDI self-service portable project phase I, completing the design of the enhancement, delivered prototype, implemented new database that can support new requirements and future growth. Scripting/Automation of task to provide efficient work flow in environment.

Information Technology (IT) Specialist, U.S. Geological Survey, 24 hours/week

IT support for the California Water Science Center. Resolves retrieval problems by altering design to meet requirements. Prepared reports by collecting, analyzing, and summarizing information. Established and revised databases by conferring with analysts and programmers to code and retrieve data. Supports end-users with IT-related problems in a responsive and service oriented manner. Provides input and recommendations to the organization surrounding new and existing hardware and software technologies and how these technologies can assist the business.

**AWARDS AND ACCOMPLISHMENTS:** Dean's Honor Roll, National Science Foundation Scholarship, National Action Council for Minorities in Engineering (NACME) Scholarship, Louis Stokes Alliance for Minority Participation (LSAMP) Program.

2407 Larkspur Ln. # 274, Sacramento, CA 95825

(916)-833-3759

djmponte@gmail.com

**EDUCATION** In progress: **BS Electrical/Electronics Engineering** • CSU, Sacramento • May 2016 • McNair Scholar

**Didier (Dj) Mponte** 

# **RELATED COURSES**

Embedded Processor System Design Introduction to Microprocessors Microelectronics I Power Electronics* Logic Design

**Biomedical Signal Analysis & Processing** Probability & Random Signals Energy Systems Optimization & Control* Electromechanical Conversions Smart Electric Power Grid*

Digital Control Systems* Machine Vision* Network Analysis Strategic Management* **Applied Electromagnetics** *Spring 2015

# SKILLS

Software/Hardware

Verilog • Quartus II • Modelsim • Matlab • C/C++ • Python • ADS • Parallax Spin Code • PSPICE • MS Office Function Generator • Oscilloscope • Digital Multi-meter • Power Supply • Cyclone IV FPGA 3D Printing • Laser Cutting • AutoCAD

# Leadership/Management/Communication

- Effective project management, team, and organizational skills
- Strong analytical, product design, and problem solving skills
- Well-refined written, verbal, and presentation skills

# WORK EXPERIENCE

**Product Design Intern** 

#### The Shop @ VSP Global Innovation Lab 11/14 – Present

Applied Design thinking ideology, direct observation, and empathy to develop smart wearable device and mobile application for the aging population.

#### **Telecommunications Engineering Intern** Sacramento Municipal Utility District (SMUD) 10/14 - 2/15

Learned and utilized AutoCAD to design schematics for electrical layouts and components for various sub-stations and or network wiring. Applied fiber optic principles to design layouts and processed documentation in SAP.

# Vehicle Systems Engineering Intern

**Bay Area Rapid Transit (BART)** Applied engineering practices and research to debug and test revenue vehicle circuits. Analyzed BART Train schematics and wiring diagrams in order to install new components and or to conduct further circuit analysis to existing problems. I was also responsible for writing design proposals, procedures for installations, as well as vehicle maintenance bulletins to improve the reliability, availability, and safety of the revenue vehicles.

# Student Researcher

# **California Smart Grid Center**

**California Air Resources Board** 

Conduct in-depth research into leading edge technology and develop products designed to aid in the dissemination of information and integration of renewable distributed power generation sources and Home Area Networks (HAN) required for power conservation and the Smart Home of the future.

# **Engineering Student Assistant**

Compile and distribute local, State and Federal air quality regulation information. Responsible for analyzing fleet vehicle regulation compliance accurately and making appropriate recommendations to companies.

# **Co-Founder & CFO**

# Nickel and Dime Auto

Worked on strategies to increase company profits through research, marketing, and outreach. Processed financial documents in compliance with California State Law.

# **PROFESSIONAL ACTIVITIES AND ACHIEVEMENTS**

Chapter President, CSUS National Society of Black Engineers Dean's Honor List, Spring 2013, Fall 2013 Recognized by the California State Legislature for involvement in Solar Suitcase Project

# 11/13 to present

6/14 - 8/14

# 9/13 to 12/13

# 1/12-9/12

# **PROJECT EXPERIENCE**

# Vision Based Control System (In Progress)

As part of a two man team, we are building a RC car with a camera tripod mounted on top that will use machine vision techniques to measure the distance between the subject as well as perform facial recognition. The data will be sent to our PID controlled RC car, which will keep a specified distance between the subject as well as control the tripod to track and follow the face it detects.

# Gesture Controlled Wearable Device (In Progress)

Developing a simple gesture based control wearable to control LEDs utilizing an EMG sensor and microcontroller. The EMG sensor is developed using electrodes and digital signal processing via Matlab. This processed signal gets stored within the arduino-based microcontroller. Control signals are saved based on hand gesture. Once these various hand gestures are detected an LED, or series of LEDs would shine specified color schemes.

# McNair Scholar: Research in Energy Storage Technology (In Progress)

Currently researching into the field of Energy Storage Technology, its impact on renewable energy adoption, and strategies to lower the cost of the overall renewable energy adoption with ultimate goals of decreasing our dependency on oil and creating a cleaner, greener environment for all.

# Charge Balancing Battery Management Control System

Developed a generator based battery management control system using two DC motors, a microcontroller, and an elastic shaft to switch the polarity of the motors to make them generators. The design was able to measure the value of the lithium ion battery using the microcontroller, set a desired voltage level, and allow the generator to charge the battery to this desired value.

# Regional Finance Chairperson, NSBE

As the 2014 Regional Finance Chairperson, my duties were to communicate, strategize, and enhance the relationships between our organization and our corporate partners while also seeking new partnerships. In doing so, I organized a career fair for our Fall Regional Conference, hosted an Exhibitors meeting, connected business professionals with top tier talent within our membership, negotiated contracts with various corporate partners and generated a regional all time high of \$74,000+ all within four months of taking my position.

# **Customized Home Automation System**

Working within a four-man team, created a customized home automation system. The system provided the user with a motion detecting apparatus used for an alarm system, a pH sensor to measure the pH levels in the homeowner's pool and fish tank, and a customized web server. The web server provided our user interface, real time video surveillance, displayed the data from the sensors, and allowed the user to turn on and off appliances through our web application. My task was to configure the ultrasonic sensor to continuously rotate 180 degrees and simultaneously record and display the distance of the nearest objects or persons.

# Regional Leadership Conference, NSBE

As Regional Leadership Conference Chairperson, planned and hosted NSBE chapters across 13 western states on how to effectively lead their organization. While managing 20+ Regional Executive Board Members, developed the threeday event program and agenda for the conference. Reached out to corporate sponsors for budget support and participation.

# Solar Suitcase Project, Green Technical Education

Led a team of 7 people in constructing solar suitcases which served to provide citizens of third world countries power and lighting to compensate for power outages. The *Solar Suitcase* consisted of an 18-watt solar panel, a 12-volt battery, and user interface, which monitored the power usage and battery level. Personally responsible for leading my team on building the product, which required a strong understanding of following procedures in sequence and prototyping of the *Solar Suitcase* prior to instruction.

7842 Kanan Court, Citrus Heights, CA, 95621

# https://www.linkedin.com/in/harpreetsinghsidhu

happy73093@gmail.com

05/14 - Present

07/12 - 08/12

Spring 2015

### **OBJECTIVE:**

Engineering position to apply my technical abilities and education.

# EDUCATION:

Bachelors of Science Electrical and Electronics Engineering, CSU Sacramento Expected Graduation: Spring 2016 Major GPA: 3.90; Overall GPA: 3.115

**RELATED COURSES:** 

Electronics II*	Advanced Logic Design	Probability and Random Signals
CMOS and VLSI Design*	Embedded Processor System Design	Signal Processing and Linear Systems
Feedback Systems*	Microprocessor Design	Applied Electromagnetics

#### **KNOWLEDGE AND SKILLS**

Programming:	PHP • Verilog • VHDL • HTML • SQL
Programming (Familiar):	MySQL • JavaScript • C# • C/C++ • Spin • Assembly • Machine • Python • Scripting • VBA • jQuery •
	AngularJS • Bootstrap Framework
Software Applications:	MS Office 2003 – 2013 • Cadence Allegro • Cadence PSpice • Cadence Virtuoso • PHPStorm •
	Quartus II • ModelSim-Altera • NI Multisim 13.0 • MS DOS • Xilinx ISE Design Tool
Operating Systems:	Windows XP – Windows 10 • OS X • Linux (familiar)
Verbal Languages:	Bilingual: English/Punjabi
J. J	

(916) 792 - 9604

#### WORK EXPERIENCE:

Data Center Group Platform Application	Intel Corporation
Engineering Intern	

Designed and Developed an application using PHP, Perl, C#, VBA, JavaScript, and MySQL that is able to analyze, extract, process, and generate Cadence Allegro designs. Crucial data on customer board designs were extracted. All data was filtered to give the end user exactly what was requested. Developed metrics for each interface on the board design, ex. PCI-E, I/O, Clocks. Developed a search engine for all board design components, nets, pins, and ref des, to allow an easy way to find what a user wants. Developed a caching system to provide a user experience that allowed for near instantaneous data processing. Developed a system for user rights management to work with corporate wide SAML site federation, used with authentication and content management.

#### **Summer Intern**

#### **Intel Corporation**

Selected to be an intern for a six-week program supporting the increasing of US-based Engineers. Developed, prototyped, and presented a business plan. Engineered a quad copter robot. We conducted test flights and competed against IUEE interns for the longest flight time. Wrote, troubleshot, and demo'd a working C# application. Attended NorthWestern University's Engineering Design and Communication Course (EDC). During this time my team and I researched, developed, and then tested multiple prototypes of our given item, which all lead to a complete final design. Design development included following FAA and TSA guidelines in building a more versatile piece of travel luggage. One improvement to the design of the common travel

# **PROJECT EXPERIENCE:**

# Embedded Systems Project – Autonomous Swarm

luggage was implementing a trapezoidal shape.

Objective of the design was to create an autonomous swarm of vehicles to do reconnaissance. Designed, developed, tested, debugged, and managed a project with a 5 person team, to complete within 3 weeks. A FPGA, series of Microcontrollers were used to implement the design. Address decoding, control functions, input and output, ports, handshaking signals, and interrupt control were implemented in the FPGA, with an interface to a series of microcontrollers wirelessly. Communication protocols used include SPI bus, I2C, UART, and Bluetooth. Laboratory techniques include writing test benches, using oscilloscopes, logic analyzers, protocol analyzers, and programmers for EEPROM, FLASH, and microcontrollers. Code was written in C and Verilog.

# Microprocessor Design Project – R/C Vehicle

Objective of the design was to develop a user controlled vehicle with controlled accessories, such as a nerf gun. All development was done in course of 4 weeks. Designing, testing, debugging, and management were required of this project with a 4 person team. Android application worked in parallel with an Arduino Uno Microcontroller to control a weaponized R/C vehicle. Communication Protocols used include, Bluetooth, I2C, PWM. Code was written in C.

# ACTIVITIES AND ACCOMPLISHMENTS:

IEEE Member: Fall 2014 - Present Dean's Honor List: *Fall 2011* SHPE Member (Part of the Outreach Committee): *Spring 2012-Present* NSBE Member : *Fall 2013-Present* MESA/MEP Member: *Spring 2012-Present* EOP/Leadership Initiative: *Summer 2011, Fall 2011, Spring 2012* 

Reference available by request

#### Fall 2013